

All aspects of design including pinout, dimensions
and software syntax are

Copyright 2010-2011 Itron UK Limited
A subsidiary of Noritake Co. Ltd Japan

Product No TU480x272C-XXX
Issue Date 1/4/2011

Document Ref 42779

Index Description Section
General 1

 Dimensions

 Optical and Environmental Parameters

 Electrical Parameters

 Connector Pin Assignment

 Jumper and additional Connector information

 PCB (rear view)

Accessories 2
 USB Cable, RS232 Cable, CAN Bus Interface, Battery Holder, IDC Interface
 Cable, AC97 Audio Module, USB-SD expander
Overview 3

System Hardware Setup Parameters and Development Status 4

 System, RTC and Counter Setup 5

 RS232 Interface 6

 RS485 Interface 7

 CMOS Asynchronous Interfaces 8

 SPI Interfaces 9

 I2C Interfaces 10

 Keyboard and I/O Interfacing 11

Command Overview 12

System Commands 13
FPROG.....FEND
LIB(Name,Source)
INC(Source)
Reset(Name)
;
;;
[cmd(..);cmd(..);...cmd(..);]
Page and Group Commands 14
PAGE(Name,Style){....}
LOAD(Dest,Name,Name,...)
SHOW(Name)
HIDE(Name)
DEL(Name)
Commands for Cursor Position, Text, Draw, Image and Keys 15
POSN(X,Y,Page/Name,Style)
TEXT(Name,Text Style)
DRAW(Name,X,Y,Style)
IMG(Name,Source,X,Y,Style)
KEY(Name,Function,X,Y,Style)
Function Commands 16
VAR(Name,Style)
IF(Var~Var?Function1:Function2)
LOOP(Name,Var1){.....}
INT(Name,Buffer,Function)
CALC(Result,VarA,VarB,Method)
FUNC(Name){....}
RUN(Name)
WAIT(Time)

 Reserved Word 17

 Styles List 18

 Setup List 19

Character Fonts 20

Colour Chart 21

 Getting Started 22

Example Projects - Air Conditioning & Elevator 23

FAQ 24

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 1 of 50

http://www.itrontft.com

General - 1

4.3" iSMART TFT Module

480X272 pixels
16 Million Colours
100 Page Display RAM
128M Byte Flash
4G+ Micro SDHC Slot
LED Backlight Control
5V Supply 3.3V Logic
ASCII + MultiFonts

Full RS232 Port
SPI - I2C Interfaces
Sync Serial Controller
USB 2.0 Interface
Resistive Touch Screen
Up to 12 x 12 Key Control
Up to 24 User Digital I/O
2 Analogue Inputs
2 PWM Outputs
Real Time Clock + Date

Run Animations
Auto Menu Control
Screen Rotation - 90, 180
Graphic User Interface
Integrated Debugger

Downloads
Full Specification (pdf)

Full Specification (compiled)
2D Mechanical

EMC Data

The 5.6mm TFT thickness
includes a touch screen.
This dimension is reduced
for non touch versions

Module Part Number Price** RS232 RS485 Touch USB CN8 Battery Holder CANBUS Adaptor Note
TU480X272C-K612A1 Yes - - - - - -

-K612A1T €88 Yes - Yes - - - Standard

-K612A1TU* €89 Yes - Yes Yes - - Can use as Dev Kit

-K612A1TUB €90 Yes - Yes Yes Yes - Battery not included

-K612A1TUBC €104 Yes - Yes Yes Yes Yes Battery not included

TU480X272C-K611A1 Yes Yes - - - - -

-K611A1T €94 Yes Yes Yes - - - -

-K611A1TU €95 Yes Yes Yes Yes - - -

-K611A1TUB €96 Yes Yes Yes Yes Yes - Battery not included

-K611A1TUBC €110 Yes Yes Yes Yes Yes Yes Battery not included

* Main distributor stock item, other versions supplied to order. Pre-fitted connector options are available.
** Unit price excludes freight and VAT. Option to pay in GBP £

This product has been designed to simplify the implementation of TFT technology into your product. The high level text based object oriented
command structure, entity library and 100 page screen memory allow most of the processing to be undertaken by the TFT module leaving the host
CPU to concentrate on the core application processes. This allows proven firmware running on small 8 bit microcontrollers to be modified to drive this
TFT module with a minimum of work and risk.

Optical & Environmental Parameters

Screen Type 480x272 pixels - RGB Stripe - Pixel Pitch 0.2x0.2mm
Display Area 95x53mm - 4.3" diagonal
RGB Colours 16 million (24 bit) - Custom option: 65,535(16 bit)
Display Type Transmissive
Contrast Ratio 250:1
View Angle (typ) 60 degrees
LED Backlight Illumination 300 nit
Response Time 25ms @ 25C
Default Viewing Angle 12 o'clock (6 o'clock-Invert the PCB and set 180 degrees orientation in software)
Operating Temperature -20C to +70C
Storage Temperature -30C to +80C
Humidity 20% to 70% RH
Vibration 10-55-10Hz, all amplitude 1mm, 30Min., X-Y-Z (Non operating)

Shock 392m/s2 (40G) 9mS X-Y-Z, 3 times each direction (Non operating)

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 2 of 50

http://www.itrontft.com

Electrical Parameters
Parameter Sym Min Typ Max Unit Condition Note

Supply Voltage VCC 4.5 5 5.5 VDC VSS=0V Absolute Max 6.0VDC

Logic Supply Output VDD 3.2 3.3 3.4 VDC VCC=5V Max50mA

Logic Input Voltage
"H" VIH -0.5 - 3.4 (1) VDC VCC=5V /RES, K0-K24, SCK, /SS, HB, SIN,

SCL,SDA"L" VIL VSS - VSS+0.5 VDC VSS=0V

Logic Output Voltage

"H" VOH 3.0 - 3.4 VDC
IOH=2mA
VCC=5v

K0-K24, SDA, SCL, SOUT, MB

"L" VOL 0 - 0.7 VDC IOL=-2mA
VCC=5V

"H" Level Logic Input Current IIH - - 1.0 uADC VCC=5.5V /RES, K0-K24, SCK, /SS, SIN, SCL,
SDA"L" Level Logic Input Current IIL - - 1.0 uADC VCC=5.5V

RS232 Input Voltage
"H" VIH 2 - 15 VDC VCC=5V

RXD, CTS, DSR
"L" VIL -15 - VSS+0.5 VDC VCC=5V

RS232 Output Voltage
"H" VOH 4 7 - VDC

3kΩ to GND
VCC=5V

TXD, DTR, RTS
"L" VOL - -3 -2 VDC 3kΩ to GND

VCC=5V

Power Supply Current 1 ICC1 340 360 390 mADC VCC=5V All dots on

Power Supply Current 2 ICC2 120 140 170 mADC VCC=5V LED Backlight Off

Power Supply Current 3 ICC3 50 60 70 mADC VCC=5V Reset LOW

Note (1) The voltage applied to logic signals must not exceed the rising VCC at power on as this could affect module initialisation

Connector Pin Assignment

CON Function 1 2 3 4 5 6 7 8 9 10 Note
CN1 RS232 Port NC DTR TXD CTS RXD RTS DSR NC GND 5V Fits 9 way IDC D type pin 1-9

RS232+RS485 T+ R- TXD CTS RXD RTS R+ T- GND 5V Available on -K611xxx
CN2 5V In / Piezo / GND 5V /PZ 0V - - - - - - - Connect piezo negative
CN3 I2C Serial Mode 5V SCL - SDA 0V - - /RES 3v3 Logic (5v in option)

Asynch Serial Mode 5V - SI - 0V - SO /RES MB HB 3v3 Logic (5v in option)
Clock Ser / SPI Mode 5V SCK /SS MOSI 0V MISO /IRQ /RES MB HB /IRQ flags read request to host

CN4 ADC In, PWM Audio AN1 AN2 0V 5V PW1 PW2 ATX ARX ACK AFS AC97 Audio Pins 7-10
User I/O K16 K17 0V 5V K18 K19 K20 K21 K22 K23 Additional I/O

Note: RTS/CTS or DTR/DSR can be selected, not both. When RS485 fitted in model K611A1xx then only RTS/CTS are possible.
NOTE TU480X272C v4 PCB cannot use K2,K3,K4 when RS485 fitted. Changed in v5 PCB.

CON Function 1/2 3/4 5/6 7/8 9/10 11/12 13/14 15/16 17/18 19/20 Note
CN5 USB/ SD Card Extension DA2 CDA CK DA0 0V 0V DM CNX - - SD Card Pins 1-10

USB Pins 11-16DA3 3V3 0V DA1 CD 5V DP 0V - -
CN6 Debug / Async Serial 3V3 DRXD DBG

3V3 output max 50mA0V DTXD
CN7 8x8 Keyboard Matrix and

user I/O Ports
5V 3V3 K0 K2 K4 K6 K8 K10 K12 K14 3V3 output max 50mA
0V 0V K1 K3 K5 K7 K9 K11 K13 K15

CN8 USB Connector 5V power is provided from the PC. Standard Mini B connector can be omitted on user request.
CN9 SD Card Slot Micro SD Card holder allows permanent installation for large storage or upload to internal flash.

5V pins are common un-fused input /outputs. 3V3 pins are outputs only with a total 50mA capacity. Do not connect pins '-' or NC

Note: RTS/CTS or DTR/DSR can be selected, not both. When RS485 fitted in model K611A1xx then only RTS/CTS are possible.

Jumper and Additional Connector Information
JMP/CON Function Note

BT1 Battery Connector Apply solder bump to center pad before fitting holder. CR2025 battery positive up.
BATT1 RTC alternate power 3VDC Apply right angle connector top side soldered.

BL LED Backlight alternate supply When the backlight is software disabled, 30VDC at 20mA can be applied by the user.
J4 RTS Jumper Solder 1 and 2 for RTS.
J5 RTS / DTR Jumper Solder 1 and 2 for RTS, solder 2 and 3 for DTR.
J6 CTS / DSR Jumper Solder 1 and 2 for CTS, solder 2 and 3 for DSR.

J15 RTS+RS4/DTR Jumper Solder 1 and 2 for RTS and RS485 if fitted, solder 2 and 3 for DTR when RS485 not fitted.
J16 CTS+RS4/DSR Jumper Solder 1 and 2 for CTS and RS485 if fitted, solder 2 and 3 for DSR when RS485 not fitted.
xWP Write protect jumpers Solder to prevent data update of non volatile memory where fitted.N=Nand, EE=EEPROM.

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 3 of 50

http://www.itrontft.com

Rear View TU480X272C-K612A1TUv3 with factory jumper setting.

Rear View TU480X272C-K612A1TUv4 with factory jumper setting.

Rear View TU480X272C-K612A1TUv5 with factory jumper setting.

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 4 of 50

http://www.itrontft.com

Pin Assignments, Module Dimensions and Function Syntax Copyright 2010 Noritake Co Limited

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 5 of 50

http://www.itrontft.com

Accessories - 2

Accessories

Noritake- Itron offers a range of accessories to get you up and running quickly.

 USB Cable
IFCKUSBminiB2M

 RS232 Cable
IFCK232-610A

CAN Bus Interface
EMBCK33A
Maximum speed 1MHz

More Details...

AC97 Audio
Module
MCBK-AC97P1
Bi-directional stereo
codec and amplifier

 TBA

Battery Holder
CONFSCR1216
Uses a CR1216 battery
Solders to rear of TFT

USB-SD Expander
CBK-USBSD1
Supplied with bezel
for panel mounting

 TBA

IDC Interface Cable
IFCK10DC10-200A
10 way 200mm length

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 6 of 50

http://www.itrontft.com

Overview - 3
iSMART TFT Module Overview

Product Overview
This product has been designed to simplify the implementation of TFT technology into your product.
The high level text based object oriented command structure, entity library and multi page screen memory allow most of the processing to be
undertaken by the TFT module leaving the host CPU to concentrate on the core application processes. This allows proven firmware running on
small 8 bit microcontrollers to be modified to drive this TFT with a minimum of work and risk.

Hardware for 4.3"

*option

Software Overview
Several customers have asked why we developed our own object oriented programming language rather than provide a product with Linux or an
operating system supporting compiled 'C'. If we look back at the original requirements we can see some of the reasons.

Prime: A combined operating and communication software offering unique capabilities for slave / host applications.
1/ The customer’s end user or distributor could write code and insert images to add in their own functionality with a text editor.
2/ The program code could be updated or expanded by the host system using ASCII text over a serial link.
3/ The product should be license free and use simple development tools.
4/ The customer can create his own large images and control them like fonts.
5/ The SD card should be able to stream video and audio with the minimum of user programming.
6/ Existing host software need only have limited changes to upgrade a display from 4X20 LCD to a full colour TFT.
7/ The module has the intelligence to operate as a host and the compact command language to act as a high speed slave.
8/ The number of commands should be minimized by using 'overloading' and provide a higher level of functionality than C functions.
9/ The parameters for interfaces and screen entities should be held in styles similar to HTML.
10/ The application development time should take days or weeks rather than months.
11/ If the software engineer leaves the company, it is relatively easy for the engineering manager to amend the program.

These reasons may not be key to your application, but we believe it does offer new product opportunities.

High Level Object Oriented Commands
The module has an integrated compiler and debugger so that users can write the high level object oriented language commands in a text file or
send via an interface to develop their application. Although pictures and fonts can be loaded via an interface, it is best to store these on an SD
card or transfer via USB from on a PC. The multi faceted commands are divided into 4 groups as shown below.
You may be thinking how can 25 commands operate a host system, so lets take a look at the LOAD command. It can perform the equivalent
language functions of strcpy, strcat, format, inp, outp and a page collation function. Please study our application example code for an
understanding of this compact language.

library & system page & visibility draw on page functions
FPROG Load Menu/Img to Flash
LIB Load Image/Font to RAM
INC Include a sub file
RUN Call function or user code
RESET Reset system, library, time
;; Refresh current page
; Terminate command

PAGE Create a page of entities
STYLE Set parameters
SHOW Show a page or entity
HIDE Hide a page or entity
DEL Delete entity from Library
LOAD Copy and format pages,
 strings, interface and data

POSN Position cursor on page
TEXT draw text on page
DRAW draw box, circle, line, pixel
IMG draw image on page
KEY create touch or external key

FUNC Create a function
VAR Create a variable
IF ? : Conditional test
LOOP Repeat commands
CALC Calculation and string edit
WAIT Set delay period
INT Set an interrupt

Styles make your Application Consistent
All entities and buffers use parameters stored in a Style similar to HTML web pages. These are extensive and define colours, entity types, buffer
size and interface parameters like baud rate, clock edges and data format. Styles can be embedded in parent styles to reduce repetition and
simplify changes.

Screen Page Creation and Control
Pages can be smaller than the screen for pop up help menus, status information and lists. Buttons can be varying size, with radio, rectangle or
check box style with special types for navigation actions. The cursor position command allows relative or absolute positioning for reduced
instructions during page layout. Entities can be updated by incoming host commands and their associated functions can run all the time or only
when the entity or it’s page is visible. When a text is numeric, it can be compared, incremented or decremented or form part of an equation using

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 7 of 50

http://www.itrontft.com

the CALC command. Buffers or variables can be created for interfaces, on-board memory, the SD Card, timers, counters and text. Hex code can
be included in text variables when prefixed by \\.
When creating your page structures and functions in a file, // prefixes user comments.

Uploading your Menu Structure, Functions and Images
Data received from interfaces or flash memory is processed and stored in RAM libraries for high speed access to create or refresh pages and
entities. Every entity has a text name for easy reference by future update commands.
In a similar way to a PC, your software could be permanently retained on an SD card and auto loaded at Power On or saved in internal flash by
transferring it from an SD card or uploading it via an interface port. SD cards of 1G size and SDHC cards of 4G, 8G, 16G and 32G size are
supported. 2G SD cards are not supported.

If an SD Card is used, the module will look for a file called ‘TU480A.MNU’ which will reference all other menu or image files. This may be your
only menu file with all functions included. It would have a header similar to the example below to copy other files on the SD card to the internal
flash memory. See the 'example projects' section

RESET(LIBRARY); FPROG;
LIB(BACKIMAGE,”SDHC/backmain.bmp”); //load background picture into the onboard flash library
LIB(STARTIMAGE,”SDHC/startbut.bmp”); //load start button into the onboard flash library
…….. FEND;

From Q1,2011, entities can be changed via the user interfaces by direct reference to there name or style
Examples:
homepage.back=“BLUE”; change the background colour of the page called homepage to blue
rs2.set=“96e”; change the rs232 baud rate to 9600 baud with even parity
StatusText=“Visual Error”;; change the text area called StausText to show Visual Error
GenText.font=“40X56Kata” change font size of all text using style GenText

We hope you find the 'getting started' and online examples suitable for understanding the functional techniques and rapid implementation in your
application. Please do not hesitate to contact our tech team by email for assistance. tech@noritake-itron.com

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 8 of 50

http://www.itrontft.com

System Hardware Setup Parameters & Development Status - 4
System Hardware Setup Parameters and Development Status
This product has been released to a limited market in Europe with 35 customers evaluating product prior to full release on 16th Sep 2010.
This page identifies the current and expected operating status of interfaces with release dates which are subject to revision.
The introduction of interface protocols (Modbus RTU) will take place in late November 2010.
The parameters for an interface are defined using the command setup(Name) {....}.

Parameters Description Status View
asynchronous interfaces set up rs2, rs4, as1, as2, dbg RS2
 set="96NC" quick set up combination OK ASY
 baud = num; num = 110 to 115200. OK
 data = num; num = 5, 6, 7, 8 OK
 stop = num; num = 1, 15, 2 15 is 1.5 bits OK
 parity = ch; parity = Odd, Even, None, Mark, Space OK
 rxi= Y or C or N; set receive buffer interface active OK
 proc = “;” or \\0D or other process on receive string terminator OK
 procDel = Y or N delete or keep termination character. OK
 rxb= num; set size of receive buffer in bytes. OK
 txi= Y or E or N; set transmit buffer interface OK
 txb= num; set size of transmit buffer in bytes. OK
 encode = s , w, m; s= single byte ASCII, w=2 byte UNI, m= UTF8 OK
 flow = N , H, S; flow control - none, hardware, software XON XOFF OK except XON/OFF plan 2nd Dec

spi interface set up spi , tsync, rsync Receive OK, Transmit 26th Nov SPI
 set = "MR100"; quick set up combination OK for receive
 active= M or S or N; set as Master, Slave or None Slave Only
 edge= R or F; uses Rising or Falling clock edge OK
 speed = 100; set transmit speed in master mode
 rxi= Y or C or N; set receive buffer interface as active OK
 proc=“;” or \\0D or other process on receive string terminator OK
 procDel = Y or N delete or keep termination character. OK
 encode = s , w, m; s= single byte ASCII, w=2 byte UNI, m= UTF8 OK
 rxb= num; set size of receive buffer in bytes OK
 rxo= M or L; set receive data order OK
 rxf = N , H; use none or hardware MB
 rxs = N , Y; use select input \RSS. OK
 txi= Y or E or N; set transmit buffer interface as active
 end= "nn" byte returned when no data left in buffer
 txb= num; set size of transmit buffer in bytes.
 txo= M or L; set transmit data order
 txf = N , H; none or hardware HB in Master mode
 txs = N , Y; use select output \TSS in master mode

i2c interface set up i2c I2C
 set = "S7E"; quick set up of I2C - Slave and Address OK
 addr= "nn" address pair where nn write, nn+1 read OK
 end= "nn" byte returned when no data left in buffer OK
 active= M or S or N; set as Master Slave or None OK
 speed = 100; set transmit speed value in master mode OK
 rxi= Y or C or N; set receive buffer interface as active with command OK
 proc = “;” or \\0D or other process on receive string terminator OK
 procDel = Y or N delete or keep termination character. OK
 encode = s , w, m; s= single byte ASCII, w=2 byte UNI, m= UTF8 OK
 rxb= num; set size of receive buffer in bytes OK
 txi= Y or E or N; set transmit buffer interface as active with echo OK
 txb= num; set size of transmit buffer in bytes. OK

key i/o interfaces K23 is the highest order bit and K0 the lowest KEY
 active ihigh is active “\\000000” >“\\FFFFFF” OK
 inp high is input, low output“\\000000” >“\\FFFFFF” OK
 trig high is trigger interrupt OK
 edge high is rising edge, low is falling edge OK
 keyb high is scanned keyboard connection OK

pwm controller pwm1, pwm2 - 160Hz to 1MHz OK PWM
 active=N,1,2,12; set pwm activity None, pwem1, pwm2, pwm1 and 2
 polln=H or L; poll1, poll2 is High or Low on first phase
 cyclen=hhh; value in microseconds for cycle1, cycle2
 dutyn=hh; value as a percentage of High period
 delay=nnn; delay in microseconds between pwm1 and pwm2

analogue converters adc1, adc2 are processed at 1000 samples per second OK ADC
 active=N,1,2,12; set none, ADC1, ADC2 or both
 calib1=function name; set user function to use for calibrate/scale ADC1
 calib2=function name; set user function to use for calibrate/scale ADC2
 avg1= 1-16; number of samples taken and averaged for ADC1
 avg2= 1-16; number of samples taken and averaged for ADC2

buzz = buzzer output Use LOAD(BUZZ,var) var=ON,OFF, or time in millisecs OK BUZ

other interface references
internal eeprom parameter storage using extended variables VarE OK VAR
sdhc = SD Card (1G or 4G+) FAT32 - 8 character file names, no directory. Not 2G Read OK. Write TBA. SD
internal NAND flash Proprietary structure Active v33 for firmware
usbcom = usb com port TBA COM
usbmsd = mass storage TBA MSD
CAN adaptor - 1MHz adaptor connects to CN3 OK CAN
ac97= audio buffer adaptor connects to CN4 TBD I2S

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 9 of 50

http://www.itrontft.com

System, RTC and Counter Setup - 5
System, RTC and Counter Setup

System Set up the system. These parameters can be set at initialisation or at any time during operation by specifying the

parameter to be changed. Example: setup(system){ bled=50; }. To change a setting
use a dot operator as follows: LOAD(system.bled,50);

startup=all; Displaying messages and progress bar at start up is configurable using startup=all or none or bar.

bled = 100; set backlight to OFF=0 or ON=100 (1-99 brightness levels available v4 PCB, v32 firmware)

wdog = 1000; set the watchdog time out period in milliseconds.

rotate = 0; set the rotation of the screen with respect to PCB. This is stored in EEPROM for use with boot messages.

test=hide/showTouchAreas; hide or show touch areas during product development

encode = s, w, m; menu text strings can contain single byte ASCII (s), 2 bytes for UNIcode (w) or multibyte for UTF8 (m)

calibrate = n; initialise the internal touch screen calibration screen. This automatically returns to the previous page on completion.
If it is necessary to abort then send setup(system) {calibrate=n};

touchsamples = 20;
touchdebounce = 10;
touchaccuracy = 20;

 Define th number of touch samples per interrupt. Defaults:4.3" = 12; 5.7" = 12; 7" = 22;
 Define the time period between each sampling period. Defaults: 4.3" = 25; 5.7" = 30; 7" = 25;
 Define the 0.25 pixel accuracy of the samples. Defaults: 4.3" = 50; 5.7" = 14; 7" = 12;

Example system set up setup(system)
 {
 bled=100;
 wdog=100;
 rotate=0;
 calibrate=n;
 test=showTouchAreas;
 encode=s; //ASCII handling with extended unicode/utf8 in occasional strings
 touchsamples = 10;
 touchdebounce = 5; //picture drag and drop settings to emulate capacitive keyboard
 touchaccuracy = 30;
 }

system version The software and hardware versions can now be read to a serial port or text variable.
 LOAD(RS2, VERS_IBOOT) returns NAND bootloader version
 LOAD(RS2, VERS_ILOADER) returns main loader version
 LOAD(RS2, VERS_IAPP) returns main application version
 LOAD(RS2, VERS_IMODULE) returns module name and version

operational

Real Time Clock RTC The real time clock requires a battery to be fitted to the rear of the module or a 3VDC supply applied via a connector
fitted to the rear of the PCB. The default format is 14 Sep 2010 09:50:06 which can be modified to suit the
application which is achieved by loading the RTC into a variable having the required format. Another method is to
use predefined variables of individual RTC values.

 SET RTC
The RTC is set using 24 hour time with LOAD(RTC, "YYYY:MM:DD:hh:mm:ss");
 with fixed format where:
 - YYYY is year 1900-2099
 - MM is month 01-12
 - DD is day of month 01-31
 - hh is hours 00-23
 - mm is minutes 00-59
 - ss is seconds 00-59

Use vars to setup the time in a user page
VAR(years,2010,U16);
VAR(months,11,U8);
VAR(days,2,U8);
VAR(hours,10,U8);
VAR(mins,30,U8);

User changes the vars via buttons then a SAVE button would load the RTC
LOAD(RTC,years,":",months,":",days,":",hours,":",mins,":00");

READ RTC
You can LOAD the RTC into a variable where the format is specified in a style as follows:
STYLE(myRtcStyle, Data)
 {
 type = text; // Setup a text variable
 length = 64; // with max length of 64 chars
 format = "jS F Y g:ia"; // RTC format string
 }

VAR(RtcVar, "", myRtcStyle); // Create a var to store formatted string
LOAD(RtcVar, RTC); // Grab the formatted RTC time and date
TEXT(Txt1, RtcVar);; // Show the formatted time on display in Txt1 and refresh screen
LOAD(RS2, RtcVar); // Send formatted time on RS232 port

The RTC date/time can be displayed as a formatted string using special characters
 > Day:
 d Day of month with leading zeros 01-31
 j Day of month without leading zeros 1-31
 S Ordinal suffix for day of month st, nd, rd, th

 > Month:
 F Full textual representation of month January-December
 m Numeric representation of month with leading zeros 01-12
 M Short textual representation of month, three letters Jan-Dec
 n Numeric representation of month without leading zeros 1-12

 > Year:

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 10 of 50

http://www.itrontft.com

 Y Full numeric representation of year, 4 digits 1900-2099
 y Two digit representation of year 00-99

 > Time:
 a Lowercase Ante meridiem and Post meridiem am, pm
 A Uppercase Ante meridiem and Post meridiem AM, PM
 g 12-hour format of hour without leading zeros 1-12
 G 24-hour format of hour without leading zeros 0-23
 h 12-hour format of hour with leading zeros 01-12
 H 24-hour format of hour with leading zeros 00-23
 i Minutes with leading zeros 00-59
 s Seconds with leading zeros 00-59
 > other characters not in list will be shown as is

Format examples:
 "d M Y H:i:s" will display as: 14 Sep 2010 09:50:06 (default format)
 "d/m/y" will display as: 14/09/10

 "jS F Y g:ia" will display as: 14th September 2010 9:50am

Predefined variables below can be read, but not set.
 RTCSECS numeric variable containing seconds (0-59) which can be tested or loaded into a text.
 RTCMINS numeric variable containing minutes (0-59) which can be tested or loaded into a text.
 RTCHOURS numeric variable containing hours (0-23) which can be tested or loaded into a text.
 RTCDAYS numeric variable containing days (1-31) which can be tested or loaded into a text.
 RTCMONTHS numeric variable containing month (1-12) which can be tested or loaded into a text.
 RTCYEARS numeric variable containing year (1900-2099) which can be tested or loaded into a text.

operational

Runtime Counter The RUNTIME counter uses pre-define variables which can be set and tested for values
The command Reset(RUNTIME) sets all vales to zero and starts the timer.
This runtime counter is independent of the real time clock and runs continually so no setup is required.

CNTMILLI Increments every millisecond 0-999
CNTSECS Increments every second 0-59
CNTMINS Increments every minute 0-59
CNTHOURS Increments every hour 0-23
CNTDAYS Increments every 24 hours

 Example Usage IF(CNTMINS>30,FuncHalfHour); //if greater than 30 minutes run function called FuncHalfHour

TEXT(MinsText,CNTMINS);; //update counter value on page and refresh screen
 operational
I/O Counters The 24 I/O counters use pre-define variables which can be reset and tested for value.

The counter uses an unsigned 32bit register (U32) with names CNTKxx where xx=00 to 23.
They require the I/O to be set as an interrupt but do not require an associated INT() command.
Counter increment depends on the rising or falling edge of the interrupt.
The command RESET(CNTK00) resets to zero the I/O counter on K00.
The maximum counter speed is 0-10kHz+ and is dependent on other interrupt and entity usage.

CNTK00 Counter on I/O K00 (CN7)
CNTK01 Counter on I/O K01 (CN7)
 |
CNT22 Counter on I/O K22 (CN4)
CNT23 Counter on I/O K23 (CN4)

 Example Usage IF(CNTK00>300,Func300); //if greater than 300 run function called Func300

TEXT(K00Text,CNTK00);; //update counter value on page and refresh screen
 operational v40

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 11 of 50

http://www.itrontft.com

RS232 Interface - 6
RS232 Interface - RS2

The asynchronous communication speed and parity can be set with the setup
command. The hardware lines RTS-CTS and DTR-DSR enable communication
between host and module and are selected by jumpers on the back of the
module. Only one pair can be selected at any one time. (RTS-CTS or DTR-
DSR).

If RS485 is available on the module (suffix -K611xxx)
then only RTS-CTS can be used.

rs232 set up parameters
 setup(RS2)
 {
 set="96NC"; //quick set up combination "48, 96, 192, 384, 768, 1150 with parity N, O, E and Command option".
 }

 setup(RS2)
 { //user must test the application to establish the maximum viable baud rate.
 baud=38450; //num = 110 to 6,250,000. Any value can be set to allow trimming for deviating clocks i.e. 38450
 data=6; //num = 5, 6, 7, 8
 stop=15; //num = 1, 15, 2 - note 15 is 1.5 bits
 parity=N; //first letter of Odd, Even, None, Mark, Space
 rxi=Y; //set receive interface as active (Y), a command processing source (C) or disable (N). Default = N
 proc=“;”; //process on receive termination character. See below
 procDel=Y; //remove or keep the termination character(s) before processing
 rxb=8246; //set size of receive buffer in bytes. Default = 8192 bytes maximum = 256K bytes.
 txi=Y; //set transmit interface as active (Y), to echo command processing (E) or disable (N)
 txb=8350; //set size of transmit buffer in bytes. Default = 8192 bytes
 encode=s; //set s=ASCII, w=UNICODE, m=UTF8 or use sr, wr and mr specifying raw data bytes.
 flow=N; //none (N), hardware RTS/CTS or DTR/DSR (H), software XON XOFF (S).
 }

Serial Port Interrupt Characters
Serial Port termination characters can now be specified to generate an interrupt.
The proc parameter is used in the port setup to define the termination character(s).
 proc = all; <- trigger on all received characters
 proc = CRLF; <- trigger on a CR followed by LF (0Dh 0A)
 proc = CR; <- trigger on CR (0Dh) ...in command mode rxi=C this is fixed
 proc = LF; <- trigger on LF (0Ah)
 proc = NUL; <- trigger on NUL (00h)
 proc = \\xx; <- trigger on xxh
 proc = "ABCD"; <- string in format defined by SYSTEM encode param
 proc = "\\xx\\xx"; <- string in format defined by SYSTEM encode param

When sending commands (rxi=C) to the module, processing only occurs when \\0D or 0D hex is received.
Example: TEXT(MyText,"Hello World");;\\0D

Parameter can be updated using the dot operator
LOAD(RS2.baud,19200);
LOAD(RS2.proc,"CR");

Example usage

 setup(RS2)
 {
 set="96NC" //quick set up combination "48, 96, 192, 384, 768, 1150 with parity N, O, E and Command option".
 }

 PAGE(PageName, PageStyle)
 {
 POSN(100,100); TEXT (RecvTxt, "Example", stRecvTxt);; //show received ASCII data on screen

 INT(SerRxInt, RS2RXC, SerRxEvent); //Used when rxi=Y
 }

 FUNC(SerRxEvent)
 {
 LOAD(Var, RS2); // Must read RS2 to clear interrupt
 TEXT (RecvTxt, Var);; //show received ASCII data on screen and refresh. To update, no style is specified.
 }

Active v22 except flow control

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 12 of 50

http://www.itrontft.com

RS485 Interface - 7
RS485 Interface - RS4

RS485 is available on the module (suffix -K611xxx)
The asynchronous communication speed and parity can be set with the setup
command.

rs485 set up parameters

 setup(RS4)
 {
 set="96NC"; //quick set up combination "48, 96, 192, 384, 768, 1150 with parity N, O, E and Command option".
 }

 setup(RS4)
 { //user must test the application to establish the maximum viable baud rate.
 baud=38450; //num = 110 to 6,250,000. Any value can be set to allow trimming for deviating clocks i.e. 38450
 data=6; //num = 5, 6, 7, 8
 stop=15; //num = 1, 15, 2 - note 15 is 1.5 bits
 parity=N; //first letter of Odd, Even, None, Mark, Space
 rxi=Y; //set receive interface as active (Y), a command processing source (C) or disable (N). Default = N
 proc=“;”; //process on receive termination character(s). See below
 procDel=Y; //remove or keep the termination character(s) before processing
 rxb=8196; //set size of receive buffer in bytes. Default = 8192 bytes, maximum 256K bytes.
 txi=Y; //set transmit interface as active (Y), to echo command processing (E) or disable (N)
 txb=8196; //set size of transmit buffer in bytes. Default = 8192 bytes
 encode=s; //set s=ASCII, w=UNICODE, m=UTF8 or use sr, wr and mr specifying raw data bytes.
 flow=N; //none (N), software XON XOFF (S).
 duplex=F; //set Full Duplex (F) or Half Duplex (H). TBA
 }

Serial Port Interrupt Characters
Serial Port termination characters can now be specified to generate an interrupt.
The proc parameter is used in the port setup to define the termination character(s).
 proc = all; <- trigger on all received characters
 proc = CRLF; <- trigger on a CR followed by LF (0Dh 0A)
 proc = CR; <- trigger on CR (0Dh) ...in command mode rxi=C this is fixed
 proc = LF; <- trigger on LF (0Ah)
 proc = NUL; <- trigger on NUL (00h)
 proc = \\xx; <- trigger on xxh
 proc = "ABCD"; <- string in format defined by SYSTEM encode param
 proc = "\\xx\\xx"; <- string in format defined by SYSTEM encode param

When sending commands (rxi=C) to the module, processing only occurs when \\0D or 0D hex is received.
Example: TEXT(MyText,"Hello World");;\\0D

Parameter can be updated using the dot operator
LOAD(RS4.baud,19200);
LOAD(RS4.proc,"CR");

Example usage

 setup(RS4)
 {
 set="96NC" //quick set up combination "48, 96, 192, 384, 768, 1150 with parity N, O, E and Command option".
 }
 PAGE(PageName, PageStyle)
 {
 POSN(100,100); TEXT (RecvTxt, "Example", stRecvTxt);; //show received ASCII data on screen

 INT(SerRxInt, RS4RXC, SerRxEvent); //Used when rxi=Y
 }

 FUNC(SerRxEvent)
 {
 LOAD(Var, RS4); // Must read RS4 to clear interrupt
 TEXT (RecvTxt, Var);; //show received ASCII data on screen and refresh. To update, no style is specified.
 }

Operational except half duplex

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 13 of 50

http://www.itrontft.com

CMOS Asynchronous Interface - 8
CMOS Asynchronous Interfaces - AS1, AS2, DBG (3v3 level)

The asynchronous communication speed and parity can be set with the
setup commands. The host busy line (HB) stops the module from sending
data to the host. The use of the HB and MB busy lines are optional, and
can be connected together if not required.

AS1, AS2, DBG set up parameters

 setup(AS1) //can setup AS1, AS2 or DBG
 {
 set="96NC"; //quick set up combination "48, 96, 192, 384, 768, 1150 with parity N, O, E and Command option".
 }

 setup(AS1) //can setup AS1, AS2 or DBG
 { //user must test the application to establish the maximum viable baud rate.
 baud=38450; //num = 110 to 6,250,000. Any value can be set to allow trimming for deviating clocks i.e. 38450
 data=7; //num = 5, 6, 7, 8
 stop=2; //num = 1, 15, 2 - note 15 is 1.5 bits
 parity=N; //first letter of Odd, Even, None, Mark, Space
 rxi=Y; //set receive buffer interface as active (Y), a command processing source (C) or disable (N). Default = N
 proc=“;”; //process on receive termination character(s). See below
 procDel=Y; //remove or keep the termination character(s) before processing
 rxb=8246; //set size of receive buffer in bytes. Default = 8192 bytes, maximum 256K bytes.
 txi=Y; //set transmit buffer interface as active (Y), to echo command processing (E) or disable (N)
 txb=8246; //set size of transmit buffer in bytes. Default = 8192 bytes
 encode=s; //set s=ASCII, w=UNICODE, m=UTF8 or use sr, wr and mr specifying raw data bytes.
 flow=N; //none (N), hardware RTS/CTS or DTR/DSR (H), software XON XOFF (S).
 }

Serial Port Interrupt Characters
Serial Port termination characters can now be specified to generate an interrupt.
The proc parameter is used in the port setup to define the termination character(s).
 proc = all; <- trigger on all received characters
 proc = CRLF; <- trigger on a CR followed by LF (0Dh 0A)
 proc = CR; <- trigger on CR (0Dh) ...in command mode rxi=C this is fixed
 proc = LF; <- trigger on LF (0Ah)
 proc = NUL; <- trigger on NUL (00h)
 proc = \\xx; <- trigger on xxh
 proc = "ABCD"; <- string in format defined by SYSTEM encode param
 proc = "\\xx\\xx"; <- string in format defined by SYSTEM encode param

When sending commands (rxi=C) to the module, processing only occurs when \\0D or 0D hex is received.
Example: TEXT(MyText,"Hello World");;\\0D

Parameter can be updated using the dot operator
LOAD(AS1.baud,19200); //can load AS1, AS2 or DBG
LOAD(AS1.proc,"CR"); //can load AS1, AS2 or DBG

Example

 setup(AS1) //can setup AS1, AS2 or DBG
 {
 set="96NC" //quick set up combination "48, 96, 192, 384, 768, 1150 with parity N, O, E and Command option".
 }

 PAGE(PageName, PageStyle)
 {
 POSN(100,100); TEXT (RecvTxt, "Example", stRecvTxt);; //show received ASCII data on screen

 INT(ASerRxInt, AS1RXC, SerRxEvent); //Used when rxi=Y
 }

 FUNC(SerRxEvent)
 {
 LOAD(Var, AS1); // Must read AS1 to clear interrupt
 TEXT (RecvTxt, Var);; //show received ASCII data on screen and refresh. To update, no style is specified.
 }

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 14 of 50

http://www.itrontft.com

CANBUS Adaptor

When attaching a CANBUS adaptor type EMCBK33 to CN3 using a 10 way IDC cable, the connector is fitted to the backside of the module and the following
set up is required to match the default settings in the adaptor.

setup(AS1)
 {
 baud=38400; //num = 110 to 115200. Any value can be set to allow trimming for deviating clocks i.e. 38450
 data=8; //num = 5, 6, 7, 8
 stop=1; //num = 1, 15, 2 - note 15 is 1.5 bits
 parity=N; //first letter of Odd, Even, None, Mark, Space
 rxi=C; //set receive buffer interface as active (Y), a command processing source (C) or disable (N). Default = N
 encode=sr; //set s=ASCII, w=UNICODE, m=UTF8 or use sr, wr and mr specifying raw data bytes.
 flow=H; //none, hardware RTS/CTS or DTR/DSR, software XON XOFF
 }

The default receive address for the adaptor is ID=155h with 11bit or 29bitID
packets accepted (2.0a or 2.0b spec)
All bytes are received on AS1 with 1 to 8 bytes of data.
The transmit ID is also 155H. with data sent via AS1 with data length of 1.

Connection to an iSMART TFT is shown below.

Active

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 15 of 50

http://www.itrontft.com

SPI Interface - 9
SPI Interface

SPI Interface - SPI (3v3 level)
With synchronous communications enabled, data can be clocked into the
TFT module using the rising or falling edge of SCK. This is selectable by
the setup command which also sets other parameters. By default, data is
clocked in on the rising edge with the most significant bit sent first.
The /SS pin can be used as an enable pin if other devices are connected
to the serial line and also allows byte synchronization. If MB is set high,
the input buffer is full or disabled. A dummy/end byte for reading and
buffer status can be set by the user.

spi - set up parameters

 setup(spi)
 {
 set="MR100"; //quick set up as Master/Slave, edge R/F, Command and speed 20-1000
 }

 setup(spi)
 {
 active=M; //set as Master, Slave or None for both transmit and receive. Default = N
 edge=R; //uses Rising or Falling clock edge. Default = R
 speed=100; //set transmit speed value in kilobits/sec from 20 to 1000 for master mode. Default = 100
 rxi=Y; //set receive buffer interface as active (Y), a command processing source (C) or disable (N). Default = N
 proc=“;”; //process on receive termination character(s). See below.
 procDel=Y; //remove or keep the termination character(s) before processing
 encode=s; //set s=ASCII, w=UNICODE, m=UTF8 or use sr, wr and mr specifying raw data bytes.
 rxb= 8264; //set size of receive buffer in bytes. Default = 8192 bytes
 rxo=M; //set receive data order as most significant bit (M) or least significant bit (L). Default = M
 rxf= N; //use none or hardware MB to signify receive buffer full. Default = N
 rxs=N; //use select input \RSS. Default = N
 txi=Y; //set transmit buffer interface as active (Y), to echo command processing (E) or disable (N)
 end="nn" //byte returned when no data left in display's spi transmit buffer and as a dummy byte to send if required.
 txb=8244; //set size of transmit buffer in bytes. Default = 8192 bytes
 txo=M; //set transmit data order as most significant bit (M) or least significant bit (L). Default = M
 txf=N; //none or hardware HB used to signify halt transmit in master mode. Default = N
 txs=N; //use select output \TSS in master mode. Default = N
 }

Serial Port Interrupt Characters
Serial Port termination characters can now be specified to generate an interrupt.
The proc parameter is used in the port setup to define the termination character(s).
 proc = all; <- trigger on all received characters
 proc = CRLF; <- trigger on a CR followed by LF (0Dh 0A)
 proc = CR; <- trigger on CR (0Dh) ...in command mode rxi=C this is fixed
 proc = LF; <- trigger on LF (0Ah)
 proc = NUL; <- trigger on NUL (00h)
 proc = \\xx; <- trigger on xxh
 proc = "ABCD"; <- string in format defined by SYSTEM encode param
 proc = "\\xx\\xx"; <- string in format defined by SYSTEM encode param

When sending commands (rxi=C) to the module, processing only occurs when \\0D or 0D hex is received.
Example: TEXT(MyText,"Hello World");;\\0D

Parameter can be updated using the dot operator
LOAD(spi.baud,19200);
LOAD(spi.proc,"CR");

SPI receive active v32. Master and transmit plan 6th Feb

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 16 of 50

http://www.itrontft.com

I2C Interface - 10
I2C Interface

TWI / I2C Interface - I2C (3v3 level)
The I2C interface operates as a slave either in ‘slave receive’ or ‘slave transmit’
mode with a user defined address set in the I2C setup. Receive (i2c.rxb) and
transmit (i2c.txb) buffers of 8192 bytes are created which can be cleared and set
by the command processor. An end byte indicating empty buffer can be set.

The user must fit 10K pull up resistors to SDA and SCL somewhere on their I2C
bus.

An overview of how TWI / I2C communicates
A START condition is signalled by driving SDA low while SCL is high. A STOP condition is signalled by driving SDA high while SCL is high. After a START
condition is detected followed by address + R/W bit, the command / data bytes are stored in a 8192 byte buffer. The module will pull SDA low during the
9thclock cycle of a data transfer to acknowledge the receipt of a byte. Additional data may be sent providing the host receives an Ack. If the host has not
detected an Ack the data transfer must be started again by providing a STOP and START condition and address + R/W bit low. When reading an I2C packet
must be sent with address+1 read the data bytes from the I2C transmit buffer.

twi / i2c set up parameters

 setup(i2c)
 {
 set = "C7E"; //quick set up of I2C - Slave with Command and Address
 }

 setup(i2c)
 {
 addr="3E"; //address pair where nn for write and nn+1 for read with range 02 to FE.
 end="\\00"; //byte returned when no data left in display's i2c transmit buffer
 active=S; //set as Master (M) or Slave (S) or disabled (N). Default = N
 speed=100; //set transmit speed value in kilobits/sec from 20 to 400 for master mode. Default = 100
 rxi=Y; //set receive buffer interface as active (Y), a command processing source (C) or disable (N). Default = N
 proc=“;”; //process on receive termination character(s)
 procDel=Y; //remove or keep the termination character(s) before processing
 encode=s; //s= ASCII single byte, w=UNICODE 2 byte, m=UTF8 multibyte
 rxb=8192; //set size of receive buffer in bytes. Default = 8192 bytes
 txi=Y; //set transmit buffer interface as active (Y), to echo command processing (E) or disable (N)
 txb=8186; //set size of transmit buffer in bytes. Default = 8192 bytes
 }

Serial Port Interrupt Characters
Serial Port termination characters can now be specified to generate an interrupt.
The proc parameter is used in the port setup to define the termination character(s).
 proc = all; <- trigger on all received characters
 proc = CRLF; <- trigger on a CR followed by LF (0Dh 0A)
 proc = CR; <- trigger on CR (0Dh) .. when sending commands (rxi=C), this is fixed
 proc = LF; <- trigger on LF (0Ah)
 proc = NUL; <- trigger on NUL (00h)
 proc = \\xx; <- trigger on xxh
 proc = "ABCD"; <- string in format defined by SYSTEM encode param
 proc = "\\xx\\xx"; <- string in format defined by SYSTEM encode param

When sending commands (rxi=C) to the module, processing only occurs when \\0D or 0D hex is received.
Example: TEXT(MyText,"Hello World");;\\0D

Parameter can be updated using the dot operator
LOAD(i2c.baud,19200);
LOAD(i2c.proc,"CR");

Please view the I2C Master Mode example project from which this section is taken.

SETUP(I2C) //master mode setup
{
active = M;
end = \\FF; //necessary to choose a character for end of string
speed = 100;
encode = sr; //use raw data
rxi = Y;
txi = Y;
}

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 17 of 50

http://www.itrontft.com

VAR(null,0,U8);
// measure temperature using I2C sensor which has 40ms processing time
// the 2nd byte of the load command defines the device base address. The iSMART adjusts this depending on read or write instruction.
// the 3rd byte defines the number of bytes to read after commands (4th+ bytes) are sent.

LOOP{readTempLoop,forever) {
 LOAD(I2C,addr_temp,null,0); //addr_temp variable has \\72 for temperature sensor I2C address. Command 0 is sent with no bytes read.
 WAIT(40);
 LOAD(I2C,addr_temp,2); // read 2 bytes of data into I2C buffer
 WAIT(2);
 LOAD(temp_high, I2C); // each byte is read one at a time since raw data (encode=sr;) is defined in setup.
 LOAD(temp_low, I2C);
 IF(tuvar=1?convertt); //the function convertt is used to combine the 2 bytes and show degrees C or F according to user setting
 TEXT(tempval, temp_high);; //update textbox and refresh screen
}
Operational

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 18 of 50

http://www.itrontft.com

Keyboard and I/O interface - 11
Keyboard and I/O Interfacing + PWM, ADC and Piezo

Keyboard Control
24 I/O lines (K0-K23) can be configured to scan a key matrix with up to 144 keys
configured using the setup commands for I/O control. When a key is pressed, a
function can be initiated using a key command.

Dual key presses are supported to enable SHIFT functionality.

No diodes are required in the key matrix for dual key operation making it ideal for low
cost membrane keyboards.

NOTE: The KEY() function requires Kn connects to Km.
 To use Kn connects to GND, use an INT(Name,Kn,function); command

I/O Control
The module contains simple Input and Output functions for the 24 I/O lines (K0-
K23).All inputs include an optional pull-up resistor ~50K-120K in value. The outputs
can source ~1mA and sink ~3mA.
Certain I/O have expanded functions for customization.

NOTE: The ports K0 to K15 connect directly to the CPU without ESD protection. K16
to K23 have series 100R resistors and 10pF capacitors to GND.

K23 is the highest order bit and K0 the lowest.

NOTE: To use Kn connects to GND, use an INT(Name,Kn,function); command

keyio K00-K23 24 bits of user i/o and keyboard operatonal

 setup(keyio)
 {
 active=\\0000FF; //high is active “\\000000” >“\\FFFFFF”, default is inactive
 inp=\\00000C; //high is input, low is output “\\000000” >“\\FFFFFF”
 trig=\\000001; //high is trigger interrupt “\\000000” >“\\FFFFFF” as defined by edge
 edge=\\000000; //high is rising edge, low is falling edge “\\000000” >“\\FFFFFF”
 keyb=\\000FF0; //high is scanned keyboard connection “\\000000”>"\\FFFFFF”
 }

 Single bit variables can be set and tested K00, K01, K02...K23 once enabled
 8 bit variables can be set and tested KA, KB, KC, KD, KE once enabled
 KA = K07,K06,K05,K04,K03,K02,K01,K00
 KB = K15,K14,K13,K12,K11,K10,K09,K08
 KC = K14,K12,K10,K08,K06,K04,K02,K00
 KD = K15,K13,K11,K09,K07,K05,K03,K01
 KE = K23,K22,K21,K20,K19,K18,K17,K16

example usage to set

LOAD(K01,1); set K1 to high
LOAD(K02,0); set K2 to low
LOAD(KA,\\02); set K0,K2-K7 low and K1 high

LOAD(myVar,K01) load port into user variable
LOAD(myVar,KA) load 8bit port into user variable

example usage with interrupt

SETUP(keyio)
 {
 active=\\000001; // set K00 to be active
 inp=\\000001; // set K00 as input
 trig=\\000001; // enable trigger interrupt on K00
 edge=\\000000; // set to trigger in falling edge
 }

PAGE(mypage,pagestyle)
 {
 //set up entities or keys on page
 INT(myInt,K00,myEvent); // setup interrupt to call ‘myEvent’ on every K00 event
 //rest of page
 }

FUNC(myEvent) // This function is called each time a falling edge is detected on K00
 {
 // some actions
 }

The current firmware requires the K parameter to be 3 characters in length

I/O counters CNTK00-CNTK23 The 24 I/O counters use pre-define variables which can be reset and tested for value.

The counter uses an unsigned 32bit register (U32) with names CNTKxx where xx=00 to 23.
They require the I/O to be set as an interrupt but do not require an associated INT() command.
Counter increment depends on the rising or falling edge of the interrupt.
The command RESET(CNTK00) resets to zero the I/O counter on K00.
The maximum counter speed is 0-10kHz+ but is dependent on other interrupt and entity usage.

CNTK00 Counter on I/O K00 (CN7)
CNTK01 Counter on I/O K01 (CN7)
 |

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 19 of 50

http://www.itrontft.com

CNT22 Counter on I/O K22 (CN4)
CNT23 Counter on I/O K23 (CN4)

 Example Usage IF(CNTK00>300,Func300); //if greater than 300 run function called Func300

TEXT(K00Text,CNTK00);; //update counter value on page and refresh screen
 operational v40

pwm controller PWM1,PWM2 operational

 setup(pwm)
 {
 active=12; //use 12 to synchronize PWM 1 and 2. N=none
 pol1=H; //polarity = High or Low on first phase of PWM1
 pol2=H; //polarity = High or Low on first phase of PWM2
 cycle1=“200”; //cycle time in microseconds of PWM1. Range 160Hz to 1MHz
 cycle2 = “300”; //cycle time in microseconds of PWM2. Range 160Hz to 1MHz
 duty1= “44”; //value of first phase as a percentage for PWM1 = 1-99
 duty2= “56”; //value of first phase as a percentage for PWM2 = 1-99
 delay= “50”; //delay between first phase of PWM1 and first phase of PWM2 in microseconds
 }

 a to d converters ADC1, ADC2 operational

The input voltage range is 0V to 3VDC max. Ref voltage is filtered from 3.3VDC.
ADC1 and ADC2 are sampled each 1ms using 10bit successive approximation.
If the result is copied to an 8 bit variable, the high order bits are used.

 setup(adc)
 {
 active=12; //set none, ADC1, ADC2 or both
 calib1=0.4; //set value to use for calibration/scaling of ADC1
 calib2=0.2; //set value to use for calibration/scaling of ADC2
 avg1=16; //number of samples read and then averaged for ADC1
 avg2=16 //number of samples read and then averaged for ADC2
 }

example usage
//TU480A.MNU Menu file for TU480X272C with single red pen.
STYLE(BlackPg, Page) { Back=\\00FF66;} //green background
STYLE(stGraphRed,DRAW){type=graph; col=red; width=4; maxX=490; maxY=300; curRel=CC; } //red pen for graph
SETUP(adc){active=1; calib1=0.2; avg1=8; }

VAR(varADC1,0,U16);
VAR(PixXVal,1,U16);

Page(GraphPage,BlackPg)
{
POSN(240,136);
DRAW(MyGraphRed,480,272,stGraphRed);
LOOP(GraphLoop,FOREVER)
 {
 LOAD(varADC1,ADC1);
 DRAW(MyGraphRed,PixXVal,varADC1);;
 IF(PixXVal>478?[LOAD(PixXVal,1);RESET(MyGraphRed);]:[CALC(PixXVal,PixXVal,4,"+");]); //Move to next X Pixel
 }
}
SHOW(GraphPage);

piezo - BUZZ

CN2 is a pin connector where the centre pin (2) is connected to a 30V FET switching
to 0V with maximum 200mA.
Users can attach a piezo sounder with integrated oscillator or similar low ripple
device to provide an audible output or drive an LED indicator.
The negative terminal of the device should be connected to the TFT and the positive
to a supply from 5V to 24VDC.

Use the reserved interface word BUZZ to control the output.
LOAD(BUZZ,ON);
LOAD(BUZZ,OFF);
LOAD(BUZZ,500); //sounds for 500ms - half a second.
LOAD(BUZZ,varBuzz); // varBuzz is a user declared variable with a duration
variable.

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 20 of 50

http://www.itrontft.com

Command Overview - 12
Command Overview and Development Status
This page identifies the current and expected operating status of commands and styles
Click command view column for detailed description and check release dates which are subject to revision.
The commands have a YELLOW background and the styles a PURPLE background.

Command, Style, Variable Description Status View
FPROG.....FEND Store menu and image files in onboard flash Plan FPROG

LIB(Name,Source) Load picture or font into library OK LIB
INC(FileName) Include the contents of another menu, style or setup file OK INC

RUN(Func) Run a function or user code OK except custom code RUN
RESET(Name) Clear eeprom variables, delete list, library or reset system OK except library and deleted RESET

LOAD(Name,N2,N3,N..) Multi function copy pages, variable N2--N.. to Name. OK LOAD
SHOW(Name) Show a page, entity OK SHOW

HIDE(Name) Hide a page, entity OK HIDE
DEL(Name) Delete a page, entity OK DEL

VAR(Name,Value,Style) Create a variable of a specified type with a default value OK VAR
IF(Var~Var?Func1:Func2) Evaluate condition and do func1 if true, func2 if false OK IF

LOOP(Name,Var){...} Loop for a specified number of times OK LOOP
INT(Name,Buffer,Function) If interrupt triggered do function OK INT

CALC(Result, Var1, Var2, Act) Quick calculation and text manipulation OK CALC
FUNC(Name) {...} Declare a set of commands OK FUNC

STYLE(Name,Type) {...} Predefine parameters for page entities and variables OK
WAIT(Time) Wait specified milliseconds before next OK WAIT

; Terminate command OK SEMI
;; Refresh current page OK DSEMI

[cmd();cmd();....cmd;] Enclose commands as inline function in IF, INT, KEY, RUN OK INLINE
POSN(X,Y,Page/Name,Style) Position cursor or re-position named entity OK POSN

PAGE(Name,Style) {..} Specify contents of page PAGE

 sizeX, sixeY Specify the size of the page OK except large size -
 posX, posY Specify the absolute position on screen OK -

 back Specify the background colour of page OK -
 image Specify a background image for the page OK -

TEXT(Name,Text,Style) Define text TEXT
 font The ASCII based + extended fonts OK -

 size Size multiplier ie 24x24 to 48x48 OK -
 col Specify the text color. OK -

 maxLen Specify the maximum number per row (Max 512) OK -
 maxRows Specify the maximum number of rows (Max 32) OK -

 curRel Specify the relative placement of the text OK -
 rotate Specify the rotation of the text 0,90,180,270 OK -

DRAW(Name,X,Y,Style) Create box, circle, line, pixel, shape DRAW
 type Specify the type of shape to draw OK -
 col Specify the border colour of the shape OK -

 back Specify the back colour of the shape OK -
 width Specify the border width of the shape OK -

 sizeX,sizeY Specify the maximum width and height OK -
 curRel Specify the relative placement OK -

 rotate Specify the rotation of the shape 0,90,180,270 OK -

IMG(Name,Source,X,Y,Style) Image placement and manipulation IMG

 scale The image can be cropped to centre or scale 2.3.4,8 Plan -
 sizeX, sizeY Specify the maximum width and height OK -
 curRel Specify the relative placement . OK -
 rotate Specify the rotation of the image 0,90,180,270 OK -

KEY Designation of touch or key matrix KEY
 type Specify the source of key data - touch or external OK -

 debounce Specify the time delay to allow a key OK -
 delay Specify the time delay for auto repeat OK -

 repeat Specify the time delay for auto repeat OK -
 action Specify action point as Down or Up OK -
 curRel Specify the relative placement OK -
System Setup set up main display system SYS
 bled = 0 - 100; set LED backlight 0=OFF, 100=full ON or 1-99 OK - 100 levels on v4+ PCB only
 wdog = 0, 100, 500 or 1000; set watchdog time to OFF, 100ms, 500ms or 1 second OK
 encode = s , w, m; s= single byte ASCII, w=2 byte UNI, m= UTF8 OK
 test=show/hideTouchAreas show or hide outline view of touch areas on screen. OK
 calibrate=y, n; calibrate the touch screen OK
 rotate= 0 or 180; set screen orientation with respect to PCB. OK
Real Time Clock and Date Specify real time clock OK RTC
 active enable = Y or disable = N
 format various characters specify the date and time format
 RTCSECS numeric variable containing seconds (0-59)
 RTCMINS numeric variable containing minutes (0-59)
 RTCHOURS numeric variable containing hours (0-23)
 RTCDAYS numeric variable containing days (1-31)
 RTCMONTHS numeric variable containing month (1-12)
 RTCYEARS numeric variable containing year (1900-2099)

 use LOAD(var,RTC) and LOAD(RTC,varY,":",varM,":",etc

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 21 of 50

http://www.itrontft.com

To update a variable from a port using the equate sign e.g. VOLTS=34.5; will be available from end Jan 2011

Until then, please use LOAD(VOLTS,34.5);

Run Time Counter Predefined variables which can be set and tested.

The runtime counter is continually counting.
It is independent of the real time clock.

 OK RUN

 Reset(RUNTIME); resets counter to zero
LOAD(CNTSECS,23); set value of seconds

 CNTMILLI increments every millisecond 0-999
 CNTSECS increments every second 0-59
 CNTMINS increments every minute 0-59
 CNTHOURS increments every hour 0-23
 CNTDAYS increments every day 0-n

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 22 of 50

http://www.itrontft.com

System Commands - 13
System Commands
Command Description and Status
FPROG
………..
FEND

FPROG and FEND are used to program subsequent commands into internal flash memory. Use the RESET
(LIBRARY) command before FPROG if the existing structure is to be replaced, otherwise the commands are
appended to the existing structure.
Plan.

LIB(Name,Source)

Store image, font, user font or user code file in the library.

Image and Fonts from an SD Card (Onboard Flash)
Image and Font files can be BMP and FNT formats. Use iDevTFT to auto convert GIF, JPG, PNG.
Since BMP format does not contain transparency information, a colour can be specified after the file name. The
rotation and scaling of an image can also be specified as in the IMG command.

Example LIB(myimage,"SDHC/backimg.bmp?back=\\000007"); v0.21.
 LIB(myimage,"SDHC/backimg.bmp?back=\\000007&rotate=180&scale=75"); v0.21.
 LIB(asc16x16fnt,"SDHC/asc16B.fnt?start=\\0020"); v0.27

Image and User Font loaded from a Serial Link TBD
Where the image or font is sent over a serial interface use the following command structure.

Examples LIB(myimage,“rs2/myimg.bmp?back=\\FFFFFF&rotate=180&scale=75");
 LIB(myimage,“rs4/mypic.bmp?back=\\FFFFFF”);
 LIB(myfont,“spi/fnt?start=\\0000”);

User Code TBD
User code is submitted in ‘C’ and compiled by our firmware engineers subject to quotation and agreement. The
resultant file is of type .BIN. The user code can then be used with the RUN(Name) command.
 LIB(myprog,“sdhc/ourprog.bin”);
 LIB(myprog,“rs2/bin?bytes=36574”);

The system does not yet recognize directory structures in the SDHC card.
Please put all active files in the root. All file names are 8 characters maximum length.

.BMP is operational v17.
User Compiled Code and User Font Array TBD

INC(Source) Include another menu, style or setup file in the current file. 7 levels of include are possible.
This command can be used to reference a file containing styles and commands on the
SDHC card so that it’s contents are included at that point in the command process.
This enables modular design of the menu system.

The system does not recognize directory structures in the SDHC card.
Please put all active files in the root. All file names are 8 characters maximum length.

Example: INC(“sdhc/submenu.mnu”) specifies the file path on the SDcard.
 INC(File1,File2,File3,...FileN); multiple files are possible
Operational

RESET(Name) Clear the contents of the RunTime Counter, Delete List, Library Files or do a System reset.
Reset the System so that it re-boots as at power ON using RESET(SYSTEM)
Clear the runtime counter with RESET(RUNTIME);
Clear the EEPROM and reload defined variables RESET(EEPROM);
Clear the deleted entity list with RESET(DELETED);
Clear the library with RESET(LIBRARY); //Allows new program to load. Interface setup unchanged.

Reset 'Deleted' on 16th April

; Command separator used in menu files and data sent or received via serial interfaces. Example: RUN(HELP);
WAIT(“1000”);
Operational

;; Refresh the current page. Can be used for refreshing a page after a series of entity updates
without knowing which page is showing.
LOAD(VOLTS,"34");LOAD(AMPS,"100");;
Operational

[cmd(..); cmd(...);.......cmd(..);] The commands which require a function as a parameter ie IF, RUN, INT and KEY can have the function code
embedded inside the commands by enclosing the required code in square brackets.
This allows you to reduce the number of lines of code for simple functions and where the function is unlikely to
be used elsewhere.

Without inline:
KEY(keyFlr15,floor15fnc,104,84,TOUCH); //calls function floor15fnc

FUNC(floor15fnc)
 {
 LOAD(vReqd,15); TEXT(txtCurFlr,"15"); RUN(fncGo);
 }

With inline:
KEY(keyFlr15, [LOAD(vReqd,15); TEXT(txtCurFlr,"15"); RUN(fncGo);],104,84,TOUCH);

Operational

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 23 of 50

http://www.itrontft.com

Page and Group Commands - 14
Page and Group Commands
Command Description
PAGE(Name,Style) {…….} Create a Page or Group of entities. Pages contain entities to be shown on the display plus functions that will

run as a background task only on that page. Entities are listed so that they are layered from back to front.
Create the style and declare the page before using the SHOW(PageName); command.

Example:
In the Aircon example, the main page image has buttons which need a touch area located over each of them.
Position the cursor then draw a touch key area.
PAGE(MainPage,MainPgStyle)
 {
 POSN(400, 208); KEY(StopKey, StopEvent, 95, 95, TOUCH); //call function StopEvent
 POSN(76, 252); KEY(SaveKey, SaveEvent, 62, 24, TOUCH); //call function SaveEvent
 POSN(+80, +0); KEY(CalibKey, CalibEvent, 62, 24, TOUCH); /call function CalibEvent
 POSN(+80, +0); KEY(ClockKey, [Show(Clock);], 62, 24, TOUCH); //inline code to show clock
 }

Page Styles
The style defines the page size, position and background.
STYLE(stPage,Page) //create a style name and define as type Page
 {
 sizeX=480; //specify width of page 1 to 3* LCD width
 sizeY=272; //specify height of page 1 to 3* LCD height
 posX=0; //specify the absolute X position of page on screen. -4 * LCD width to 4 * LCD width
 posY=0; //specify the absolute Y position of page on screen. -4 * LCD height to 4 * LCD height
 back=black; //specify background colour of page as hex \\000000 to \\FFFFFF or colour name
 image=pageimg; //specify background image of page as SDHC path or entity name using LIB.
 }

Page with screen or smaller.
LOAD(Dest,Name,Name,....) Copy Pages and Groups into a previously defined Page or Group . The background and page attributes for

‘Dest’ apply to the result so only entities are copied from previous pages. This allows simple templates to be
merged to form a complex page.

Combine Variables, Buffers and Text and copy the result to a Variable or Buffer. This allows absolute text and
variables to be joined together and sent to an interface.

Example:
LOAD(num,2); //load variable num with value 2
LOAD(EditText,EditText,"D"); //Concatonate contents of EditText with D
LOAD(RS2,”DATE=”, DTIME , “; TEMP=“,ACTVAL, ”; \\0D\\0A”); //send concatenated data to RS232
LOAD(NumImg,"Image",num,".bmp"); //Create a name like Image2.bmp
LOAD(BasePage,BaseBack,BaseEnglish); //Create page from template pages

Change Setup Parameters
To change setup parameters use the dot operator. Do not change size and watchdog parameters.
This operator works for: RS2, RS4, AS1, AS2, DBG, I2C, SPI, PWM, ADC, KEYIO, SYSTEM
LOAD(system.bled, 50);
LOAD(rs2.baud, 9600);
LOAD(rs2.baud, baudvar); //use a variable
Plan to change style and var parameters in v0.40

Text to Integer/Float
LOAD(MyInt,MyText); //The text string is parsed until a non-valid numeric value.
LOAD(MyInt,"1","2","3"); //MyInt = 123
If the string does not start with a number or +/- then the result is 0. v0.36

Example Pointers
To set/change which entity the entity pointer is pointing to you use '>' instead of ','.
 LOAD(EntPtr1>"Var1"); // Set EntPtr1 to point to Var1
 LOAD(EntPtr1>"Var1",num,"3"); // Set EntPtr1 to point to Var123 (very power full not found in C)

To put data or an entity name into the entity pointed to by the entity pointer use quotes.
 LOAD(EntPtr1, "ABC"); // Load the Entity pointed to by EntPtr1 with "ABC"

Operational

SHOW(Name) Show a Page on the Display or reveal a hidden Group or Entity
This puts the selected page on the top layer of the screen. If the HIDE() command has previously been used
for an entity, it will now appear on a page when the page is shown on the display.
Show(Page) can also used to refresh a page if entities have changed.

Reserved names provide relative navigation when the name of a page may not be known..
 Show(PREV_PAGE); Show the page which launched the current page.
 Show(THIS_PAGE); Refresh the current page
 Show(Entity1, Entity2, Entity3...);; multiple show entities then refresh current page

Operational

HIDE(Name) Hide a Page, Group or Entity.
If the page on which a small sized page, group or entity is placed is showing on the screen and the page
refreshed, the named page, group or entity will disappear from view. Touch, external keys are disabled.

Hide(Entity1, Entity2, Entity3...);; multiple hide entities then refresh current page

Operational

DEL(Name) Delete a Page, Group, Entity, Variable or Buffer from SDRAM.
If visible on the display, it will remain until the page is refreshed. If the name refers to an image, font or file
stored in the flash library then this is set for memory to be freed using RESET(DELETED);
The command DEL(“LIBRARY”) is used prior to renewing all the application files.

Del(Entity1, Entity2, Entity3...); multiple delete entities

Delete is operational V17
The function RESET(DELETED) to free memory is not available until Feb2011

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 24 of 50

http://www.itrontft.com

Commands for Cursor Position, Text, Draw, Image & Keys - 15
Commands for Cursor Position, Text, Draw, Image and Keys
Command Description
POSN(X,Y,Page/Name,Style) Position Cursor +X or –X or X,Y or X, Y, Page with a defined style.

The cursor can be positioned on the display using absolute co-ordinates or moved in relation to it’s current
position by using +/- offset values. The origin is located at the top left of the screen.

Re-position a previously placed entity by specifying the new coo-ordinates and it's name.
This can be useful for indicator bars, simple movement animations and moving text.

Examples:
POSN(+25,+0); moves the cursor 25 pixels to the right.
POSN(236,48); absolute position of x=236, y=48.
POSN(24,56,CalcPage); position cursor on calc page at x=24, y=56.
POSN(VarX,Vary); use variables with absolute values to control position of cursor
POSN(VarX,Vary,VertBar); use variables to move an entity - vertical bar
POSN(TOUCHX,TOUCHY,MyRectCursor); move a cursor to the contact point on the screen.

Operational

TEXT(Name,Text,Style) Create or update Text. Use Carriage Return and Line Feed for multi line entry \\0A\\0D The font and colour are
defined in the style. If the cursor relative position is ’CC’ (Centre Centre) it is easy to locate text in the centre of
images like buttons. Text areas can overlap other text areas when for example a 'drop shadow' is required. Text
can include embedded hex codes to access Unicode fonts and a cursor.

Examples:
TEXT(EditBox,"Hello World",st8Red12); //creates Edit Box with user defined style st8Red12
TEXT(EditBox,"Hello People"); //modifies content of EditBox
TEXT(EditBox,TextVar); //modifies content of EditBox with content of variable
TEXT(EditBox,"Hello\\w0020World"); // example of unicode embedded character (see fonts page)

Editable Text and Visible Cursor
A text can contain single byte hex of the form \\00 to \\FF
A text can contain hidden codes for use in password and editable fields.
\\01 defines the text as a PASSWORD so that only ***** are shown.
\\02 defines a hidden cursor and \\03 a hidden cursor with insert ON
\\04 defines an underline cursor and \\05 an underline cursor with insert ON
\\06 defines a block cursor and \\07 a vertical cursor with insert ON
Always place the cursor before the applicable character.
When a page or text is hidden, the cursor remains at it's current location.
The CALC command can then be used to manipulate the text and cursor in EditBox.

Example Editable Text:
TEXT(EditBox,"Hello \\04World",8ptTextRed); this places an underline cursor at W

TEXT Styles
Fonts are available using single byte, 2 byte and UTF8 multi-byte coding.
Built in ASCII fonts have the reserved names Ascii8, Ascii16, Ascii32 (case sensitive).
Other library fonts are uploaded using the LIB command and have file type .FNT
These are available for download from the character fonts web page at www.itrontft.com.
Unique Font Overlay
It is possible to overlay one font over another to enable single byte operation with ASCII from 20H to 7FH and
Cyrillic, Greek, Hebrew, Bengali, Tamil, Thai or Katakana from 80H to FFH. The LIB command is used to load the
extended font at 0080H instead of it's normal UNICODE location. The style for a text can then specify
font="MyASCII,MyThai"; causing the Thai to overlap the ASCII from 80H to FFH.

STYLE(Txt32ASC16,TEXT) //assign a name for the style like Txt32ASC16
 {
 font="ASC16B,16THAI"; //define fonts using built in or preloaded .FNT files via LIB command
 size=2; //a 24x24 font is expanded to a 48x48 font. default=1
 col=white; //“\\000000” to “\\FFFFFF” or reserved words from the colour chart.
 maxLen=64; //maximum length of text. default =32, maximum=512
 maxRows=4; //maximum number of rows=32 where new line code \\0D\\0A is used.
 rotate=90; //rotation relative to screen 0, 90, 180, 270. default=0
 curRel=CC; //specify placement relative to cursor. CC Centre Centre , TC Top Centre,
 } //BC Bottom Centre, LC Left Centre, RC Right Centre, TL Top Left,
 // BL Bottom Left, TR Top Right, BR Bottom Right

Operational

DRAW(Name,X,Y,Style) Draw or update a Line, Box, Circle or Graph of size X,Y. The entities can be an outline or filled.
The colour can be enhanced using alpha blending within the draw style.
Graphs of a different colour can be superimposed on top of each other.

DRAW accepts VARs, signed/unsigned integers
 (U8, U16, U32, S8, S16, S32), floats (FLT) and pointers (PTR)

DRAW(PTR, VAR|INT|FLT|PTR, VAR|INT|FLT|PTR, Style);
 Note PTR refers to the entity being pointed to by PTR and not
 the PTR itself. Use LOAD(PTR > "Name"); to set a pointer.

Example Draw
DRAW(MyCircle, 32, 32, DrawCircle);
DRAW(MyCircle, 64, 64); //modified circle is double diameter.
DRAW(MyBox,VarX,VarY); //modified box using variables. Should not exceed MaxX,maxY.

DRAW(MyLine,10,10,lineStyle); //draws line 45 degrees top left to bottom right.
DRAW(MyLine2,10,-10,lineStyle); //draws line 45 degrees bottom left to top right.

Graph
DRAW(MyGraph,100,100,GraphStyle); //draws a graph window of 100x100 pixels.
DRAW(MyGraph,20,30); //draws a pixel on the graph at 20,30 relative to the origin.
DRAW(MyGraph,varX,varY); //use variables to plot a pixel on the graph.
RESET(MyGraph); //clears the graph

Please refer to the ADC analogue input section for an application example.

Draw Styles
It is possible to specify transparency values with colours if the colour is entered as a 32-bit hex number the top 8

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 25 of 50

http://www.itrontft.com
http://www.itrontft.com

bits specify the alpha blending level.
col = \\aarrggbb; back = \\aarrggbb; where aa = alpha level.
For example, col = \\80FFFF00; gives 50% transparent yellow.

STYLE(stCircleRed,DRAW)
 {
 type=B; //Specify the type of shape to draw. type = B or Box , C or Circle, L or Line, G or Graph
 col=red; //Specify the border colour of the shape. Use hex, colour name + alpha
 width=1; //Specify the border width of the shape default = 1
 back=\\00FF66; //Specify the fill colour of the shape. Use hex, colour name + alpha
 maxX=160; // Declare the maximum width allowing for rotation
 maxY=40; // Declare the maximum height allowing for rotation
 rotate=0; // Specify the rotation of the shape with respect to the screen. 0,90,180,270
 curRel=CC; //specify placement relative to cursor. CC Centre Centre , TC Top Centre,
 } //BC Bottom Centre, LC Left Centre, RC Right Centre, TL Top Left,
 // BL Bottom Left, TR Top Right, BR Bottom Right

Operational

IMG(Name,Source,Style) Draw or update an Image of size X,Y. Source has several techniques.
If an image is pre-stored in the library, it’s entity name is used for Source.
If it is to be directly loaded from the SDHC card the path is the Source.
Scaling and rotation can also be specified in the LIB command.
The system does not recognize directory structures in the SDHC card.
Please put all active files in the root. All file names are 8 characters maximum length.
Old version IMG(name,source,x,y,style); supported although x,y not used.

Example:
IMG(MyPic,TopBtnMyImage); //previously stored as TopBtn using LIB command
IMG(MyPic,"sdhc/TopBtn.bmp",90,60,MyImage); //stored on SDHC card

Image Styles
The image may be larger than the size specified so it is necessary to define how it will be scaled.
STYLE(MyImage,Image)
 {
 scale=100; // The image is scaled down or up by a percentage.
 //Supports 5% steps below 100 and 100% steps above 100.
 maxX=160; // Declare the maximum width allowing for rotation
 maxY=40; // Declare the maximum height allowing for rotation
 rotate=0; // Specify the rotation of the shape with respect to the screen. 0,90,180,270
 curRel=CC; // specify placement relative to cursor. CC Centre Centre , TC Top Centre,
 } // BC Bottom Centre, LC Left Centre, RC Right Centre, TL Top Left,
 // BL Bottom Left, TR Top Right, BR Bottom Right

Operational except scale C.

KEY(Name,Function,X,Y,Style) Create a Touch Area of size X,Y or define a Key on the external keyboard.

The touch area can have a One Touch function by using the built in style TOUCH or TOUCHR (repeat)
An external key can use the default style KEYIO.
Both thse built in styles process when the key is depressed.
For processing at press and release, create 2 keys at the same location with different styles, one with
action=DOWN; and the other with action=UP;.

When specifying an external key action, the values for X and Y indicate the contact points on the key board matrix
where K0 is \\00 through to K23 which is \\17 .
This method allows dual key press capability as in SHIFT key operation.
Key scan uses ports K0-K23 which can be configured as shown in the I/O section.
Switches connected to 0V should use the I/O interrupt command INT(...);

The last touch co-ordinates are stored in predefined variables TOUCHX and TOUCHY

The touch screen can be calibrated using the command setup(system) { calibrate=y; }
The position of touch keys can be temporarily viewed as a grey area using
setup(system) { test=showTouchAreas; } and hidden again using test=hideTouchAreas.
The built in style TOUCHR provides auto repeat after 1sec with 200ms repetition.
See the SYSTEM command for global touch screen debounce, sampling and accuracy parameters.

Examples KEY
Key(TopKey,TopFnc,90,50,MyTouch); a touch area 90x50 pixels. Create your own style MyTouch
Key(ExtKey,ExFunc,\\07,\\10,KEYIO); This external key operates when K7 and K16 connect.
Key(TKey,[Hide(SPage);Show(TPage);],50,50,TOUCH); Inline commands instead of function

Plan: Key(ExtKey,ExFunc,K07,K16,PushKey); This external key operates when K7 and K16 connect.

KEY Styles
Specify the source of key data. Touch debounce and sampling is setup globally in SYSTEM
If you require a dual action, specify 2 keys at the same location, one with action D and one with U.

STYLE(myTouch,key)
 {
 type=touch; //specify 'touch' screen or external 'keyio'
 debounce=250; //Specify the time delay to allow external key press to stabilise in milliseconds.
 delay=1000; //Specify the time delay before key auto repeat occurs in milliseconds. 0=off.
 repeat=500; //Specify the repeat period if the key is held down in milliseconds
 action = D; //Specify D or Down and U or Up. Specify the up or down action point for the key.
 curRel=CC; //specify touch key placement relative to cursor. CC Centre Centre , TC Top Centre,
 } //BC Bottom Centre, LC Left Centre, RC Right Centre, TL Top Left,
 // BL Bottom Left, TR Top Right, BR Bottom Right

Operational.

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 26 of 50

http://www.itrontft.com

Function Commands - 16
Function Commands
Command Description
RUN(Name) Run previously defined user code or functions.

User code is supplied in C and compiled by our firmware department subject to order.
Functions can be run as macros for compact menu design.
RUN(Func1); or RUN(Func1,Func23,Func3...FuncN); or a pointer to a function RUN(func-ptr);
Operational except User code TBD.

WAIT(Time) Wait for a period of milliseconds before processing menu commands.
Interrupts and key presses will still occur and can be processed.
Wait timer accuracy increased, now running off system tick timer (max error 200ns).
Wait is operational.

FUNC(Name) {…} Create a function called by commands which returns to the next command on completion. Functions can call
other functions and themselves. No storing or passing of variables occurs as these are all global even if created
in a function. Max 12 nested loops or functions.
Operational

VAR(Name,Value,Style)
+ pointer usage
+ non volatile parameter storage

Create a variable having a certain style and a default value.
A variable contains text or numbers which can be amended and be referred to as a single name in an equation
or to show information on the display. Variable names must start with a letter or _.
Variables can be pointers to other variables and entities and use the '>' operator.
Non volatile parameter storage is also handled by VAR which initially loads the default value, then at
subsequent power ON reloads the last stored value which was saved using LOAD(varname,newval);

Example Numbers
VAR(lowval,32.4,FLT1); define lowval as a single decimal float and default value 32.4
VAR(lowval,22.4,FLT1E); define lowval as a single decimal float and default value 22.7
 or load EEPROM value if already exists.
 Use RESET(EEPROM); to clear and reload only current values.

Example Pointers
Create a pointer which is defaulted to null using the '>' symbol.
VAR(EntPtr1>"",PTR);

To set/change which entity the entity pointer is pointing to you use '>' instead of ','.
 LOAD(EntPtr1>"Var1"); // Set EntPtr1 to point to Var1

To put data into the entity pointed to by the entity pointer, enclose data / source entity in quotes.
 LOAD(EntPtr1, "ABC"); // Load the Entity pointed to by EntPtr1 with ABC

The following commands now support entity pointers where (| means 'or this')
 > LOAD(name | ptr | "ptr", | > num | "txt" | var | ptr,...);
 > CALC(var | ptr, var | ptr, num | var | ptr,"op");
 > TEXT(name | ptr, "txt" | var | ptr,...);
 > IF(var | ptr op num | "txt" | var | ptr ? func | func_ptr : func | func_ptr);
 > KEY(name, func | func_ptr,...);
 > INT(name, buf, func | func_ptr,...);
 > SHOW(name | ptr,...);
 > HIDE(name | ptr,...);
 > RUN(name | func_ptr,...);
 > IMG(name | img_ptr, lib | img_ptr,...);

VAR Data Styles
Specify your own style for integer, float, pointer or text or use a built in style name

STYLE(stVar, Data)
 {
 type = U8; // U8, U16, U32 - unsigned 8, 16 and 32 bit integer
 // S8, S16, S32 - signed 8, 16, 32 bit integer
 // TEXT for text strings
 // FLOAT for higher resolution calculation
 // POINTER for use with images
 length=64; // For text, specify the length from 1 to 8192, default =32
 decimal=3; // Specify the number of decimal places when type is float. Range 0 to 7, default=2
 format="dd mm YY"; //Specify RTC format. see RTC page for format character types
 location=SDRAM; //Specify the data location as SDRAM (default) or EEPROM
 }

Built In Styles (Add E for EEPROM types Example FLT4E)
The following pre defined 'built in' style names are available
 U8/U8E - type = U8, U16/U16E - type = U16, U32/U32E - type = U32
 S8/S8E - type = S8, S16/S16E - type = S16, S32/S32E - type = S32
 PTR/PTRE - type = pointer, TXT/TXTE - type = TEXT, length=32
 FLT1/FLT1E - type = float, decimal = 1, FLT2/FLT2E - type = float, decimal = 2
 FLT3/FLT3E - type = float, decimal = 3, FLT4/FLT4E - type = float, decimal = 4

Operational

IF(Var~Var?Function1:Function2) Compare variables, buffers or text for value or length.
If true, do function1, if false do function2 (optional).
The ~ operator types can compare text length with another text or a numeric length.

The operators allowed for numeric values are:
 =, == equal to
 <>, != not equal to
 < less than
 > greater than
 <= less than or equal to
 >= greater than or equal to
 + sum not equal to zero
 - difference not equal to zero
 * multiplication not equal to zero
 / division not equal to zero
 % modulus not equal to zero
 & logical AND
 | logical OR
 ^ logical exclusive-OR
 =- equal to the negative of
 && Boolean AND
 || Boolean OR

The operators allowed for text strings are:
 =, == equal to
 > greater than
 < less than
 >= greater than or equal to
 <= less than or equal to
 <>, != not equal
 ~= same text length
 ~< text length shorter than
 ~> text length longer than
 ~! not same text length

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 27 of 50

http://www.itrontft.com

Examples:

IF(K0=“L”?HELPFNC); //single condition
IF(HIGHVAL < ACTVAL ? HIGHFUNC : LOWFUNC);
IF(STRVAR~>0? SHOWFUNC); //if STRVAR length > 0 show data
IF(STARVAL >= -STARTMP?SHOWSTAR);
IF(STARVAL > 0? [LOAD(vReqd,15); TEXT(txtCurFlr,"15"); RUN(fncGo);]); //uses in line code [..]

Operational v18

LOOP(Name,Var1){...........} Repeats the specified actions a number of times in a PAGE then continue. Max 12 nested loops or functions.The
value for Var1 can be a number from 1-65000 or the text FOREVER. You can terminate a LOOP using the
command DEL(Name);

Examples:
LOOP(MyLoop,12){Show(Page1);wait(100);show(page2);wait(100);} //repeat 12 times
LOOP(MyLoop,FOREVER) {Show(Page1);wait(100);show(page2);wait(100);}

Operational v17 for use in PAGE. Use in FUNC expected 4th Feb.

INT(Name,Buffer,Function) If an interrupt occurs for the specified buffer, do function.
An interrupt will occur when a buffer’s style parameters allow activity within the buffer and the appropriate
type of interrupt is set.
Serial interfaces can trigger on a byte received, a byte transmitted and a
semi-colon (command separator) received. I/O can trigger on input change.
Use HIDE(Name); to disable an interrupt.

This is currently set to interrupt on each character received for the 'Buffer':
 > RS2RXC = RS232 Receive Character
 > RS4RXC = RS485 Receive Character
 > AS1RXC = Async1 Receive Character
 > AS2RXC = Async2 Receive Character
 > DBGRXC = Debug Receive Character
 > I2CRXC = I2C Receive Character

NOTE: The Buffer must be read to clear the interrupt otherwise the Function will keep getting called!
Example:
 PAGE(PageName, PageStyle)
 {
 INT(SerRxInt, RS2RXC, SerRxEvent);
 }
 FUNC(SerRxEvent)
 {
 LOAD(Var, RS2); // Must read RS2 to clear interrupt
 LOAD(RS4, Var); //send out of RS485 interface.
 TEXT (RecvTxt, Var);; //show received ASCII data on screen
 // and refresh
 }
Operational except for counters

CALC(Result,VarA,VarB,Method)
Numeric Handling
This provides a fast simple calculation placed in the Result variable according to the type
of method using + , - , / , *, %(modulus) or logical functions | (OR) & (AND) ^ (EXOR) for non float.
Trig functions are planned.

Example: CALC(NumUp,NumUp,1,"+"); increments NumUp
 CALC(FltNum,1.0,FltVal,"-"); first parameter defines type for 2nd and 3rd parameter.
 CALC(Result,Request,8,"&"); the Result will equal 0 or 8 if bit3 is set in Request.
 CALC(SumPtr,PtrA,PtrB,"/"); use pointers for the calculation

Text and Cursor Handling
Calc can be used for text and cursor manipulation where editable text is to be placed on the screen as in a
calculator or editable text field. Various methods allow cursor movement and type, text insertion and deletion,
find or delete text, cursor position and length.
VarA contains the existing text and VarB the modifier text, cursor position or a text length.
 Example: CALC(EditBox,EditBox, "A","INS"); Inserts the letter 'A' into the text at the cursor position

Cursor and Text Types
\\01 defines the text as a PASSWORD so that only ***** are shown until another \\01 or end;.
\\02 defines a hidden cursor with over write and \\03 a hidden cursor with insert ON
\\04 defines an underline cursor with over write and \\05 an underline cursor with insert ON
\\06 defines a block cursor with over write and \\07 a ertical cursor with insert ON

Method Types - The first character in a string is 0.
INS Add text in VarB at cursor position according to cursor type and move cursor (Overwrite/Insert)
DEL Delete text of length VarB at cursor position and shift remaining text left
 If VarB is negative then text is deleted before the cursor as in Back Space
TRIM Remove characters from the beginning and end of string specified in a list VarB
LTRIM Remove charaters from the start of string as specified in VarB
RTRIM Remove charaters from the end of string as specified in VarB
POS Move cursor to absolute position in text as specified in VarB 0-n
REL Move cursor relative to existing position specified in VarB -n to +n
FIND Result gives the start position of case sensitive text VarB in VarA
IFIND Result gives the start position of case insensitive text VarB in VarA
REM Any case sensitive occurrence of the text VarB in VarA is removed and the text shifted left.
IREM Any case insensitive occurrence of the text VarB in VarA is removed and the text shifted left.
SPLIT Scans the string for a character and puts first part in result with remainder in VarA
CUR The cursor or text type is changed at the current position to type VarB (\\01 to \\07)
LEN Result contains the current length of the text in characters plus VarB.
PIXX Result contains the current length of the named text entity in pixels plus VarB.
PIXY Result contains the current height of the named text entity in pixels plus VarB.
LOC Result contains the position of the cursor in the text plus offset in VarB (-n to +n)
TYPE Result contains the type of text and cursor used - \\01 to \\07 or \\00 if none present.
AFT Result contains VarB characters after cursor position in string VarA. If no cursor, use first
 Example CALC(result,"abc\\02defghij",4,"AFT"); result="defg"
BEF Result contains VarB characters before cursor position in string VarA. If no cursor, use end
 Example CALC(result,"abc\\02defghij",2,"BEF"); result="bc"
UPPER Convert string VarA to upper case
LOWER Convert string VarA to lower case

"POS" - Move Cursor to Absolute Position
CALC(dst, src, pos, "POS");
Moves cursor in text 'src' to absolute position 'pos' and stores result text in 'dst'.
 If 'pos' is less than zero, then cursor is put before first character ('pos'=0). If 'pos' is greater than

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 28 of 50

http://www.itrontft.com

 the length of 'src' then the cursor is placed after the last character.
'dst' and 'src' can be the same text variable.
'src' is unmodified unless same text variable as 'dst'.
 Supported data types:
'dst' => text variable | pointer to text variable
'src' => text variable | pointer to text variable | "string"

'pos' => integer variable | pointer to integer variable | integer

"REL" - Move Cursor to Relative Position
CALC(dst, src, mov, "REL");
Moves cursor in text 'src' by displacement specified in 'mov' and stores result text in 'dst'.
Positive values of 'mov' move the cursor to the right and negative values of 'mov' move the cursor to the left.
 If the move results in a cursor position of less than zero, then the cursor is put before first character. If the
move
 results in a cursor position greater than the length of 'src' then the cursor is placed after the last character.
'dst' and 'src' can be the same text variable.
'src' is unmodified unless same text variable as 'dst'.
Supported data types:
'dst' => text variable | pointer to text variable
'src' => text variable | pointer to text variable | "string"
'mov' => integer variable | pointer to integer variable | integer

"INS" - Insert / Overwrite Text at Cursor
CALC(dst, src1, src2, "INS");
 Puts text from 'src2' into 'src1' at the cursor and stores the result text in 'dst'.
 The text will either be overwritten or inserted depending on the cursor type in 'src1'.
 If no cursor is present then the text is appended to the end of 'src1'.
'dst' and 'src1' can be the same text variable.
'src1' and 'src2' are unmodified unless same text variable as 'dst'
Supported data types:
'dst' => text variable | pointer to text variable
'src1' => text variable | pointer to text variable | "string"
'src2' => text variable | pointer to text variable | "string"

"DEL" - Delete Text at Cursor
CALC(dst, src, num, "DEL");
Deletes 'num' characters from text 'src' at the cursor and stores the result text in 'dst'.
If 'num' is positive, then 'num' characters will be deleted after cursor. If 'num' is negative, then -'num'
 characters will be deleted before cursor (backspace).
If no cursor is present and 'num' is negative, then -'num' characters will be deleted from the end of the text in
'src'. If no cursor is present and 'num' is positive, then 'num' characters will be deleted from the start of the
text in 'src'.
'dst' and 'src' can be the same text variable.
'src' is unmodified unless same text variable as 'dst'.
 Supported data types:
'dst' => text variable | pointer to text variable
'src' => text variable | pointer to text variable | "string"
'num' => integer variable | pointer to integer variable | integer

"TRIM" - Trim Characters from Start and End of Text String
CALC(dst, src, list, "TRIM");
 Removes all text characters found in 'list' from the start and end of text in 'src' and stores the result text in
'dst'.
If 'list' is "" (empty string) then spaces (20hex), tabs (09hex), line feeds (0Ahex), and carriage returns
 (0Dhex) are removed.
'dst' and 'src' can be the same text variable.
'src' is unmodified unless same text variable as 'dst'.
Supported data types:
'dst' => text variable | pointer to text variable
'src' => text variable | pointer to text variable | "string"
'list' => text variable | pointer to text variable | "string"

"LTRIM" - Trim Characters from Start of Text String
CALC(dst, src, list, "LTRIM");
 Removes all text characters found in 'list' from the start of text in 'src' and stores the result text in 'dst'.
 If 'list' is "" (empty string) then spaces (20hex), tabs (09hex), line feeds (0Ahex), and carriage returns
 (0Dhex) are removed.
'dst' and 'src' can be the same text variable.
'src' is unmodified unless same text variable as 'dst'.
Supported data types:
'dst' => text variable | pointer to text variable
'src' => text variable | pointer to text variable | "string"
'list' => text variable | pointer to text variable | "string"

"RTRIM" - Trim Characters from End of Text String
CALC(dst, src, list, "LTRIM");
Removes all text characters found in 'list' from the end of text in 'src' and stores the result text in 'dst'.
 If 'list' is "" (empty string) then spaces (20hex), tabs (09hex), line feeds (0Ahex), and carriage returns
 (0Dhex) are removed.
'dst' and 'src' can be the same text variable.
'src' is unmodified unless same text variable as 'dst'.
Supported data types:
'dst' => text variable | pointer to text variable
'src' => text variable | pointer to text variable | "string"
'list' => text variable | pointer to text variable | "string"

"UPPER" - Convert Text to Uppercase
CALC(dst, src, 0, "UPPER");
 Converts the characters 'a'-'z' to uppercase 'A'-'Z' in text 'src' and stores result text in 'dst'.
'dst' and 'src' can be the same text variable.
'src' is unmodified unless same text variable as 'dst'.
 Supported data types:-
'dst' => text variable | pointer to text variable
'src' => text variable | pointer to text variable | "string"

 "LOWER" - Convert Text to Lowercase

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 29 of 50

http://www.itrontft.com

CALC(dst, src, 0, "LOWER");
 Converts the characters 'A'-'Z' to lowercase 'a'-'z' in text 'src' and stores result text in 'dst'.
'dst' and 'src' can be the same text variable.
'src' is unmodified unless same text variable as 'dst'.
 Supported data types:
'dst' => text variable | pointer to text variable
'src' => text variable | pointer to text variable | "string"

"BEF" - Get Characters from Before Cursor
CALC(dst, src, num, "BEF");
'num' characters are copied from before the cursor in text 'src' and stored in text 'dst'.
 If no cursor in present then 'num' characters are copied from the end of 'src'.
IIf 'num' is larger than the number of characters available in 'src' then only the available characters are copied.
 If 'num' is negative, then the function performs as "AFT".
'dst' and 'src' can be the same text variable.
'src' is unmodified unless same text variable as 'dst'.
Supported data types:
'dst' => text variable | pointer to text variable
'src' => text variable | pointer to text variable | "string"
'num' => integer variable | pointer to integer variable | integer

"AFT" - Get Characters from After Cursor
CALC(dst, src, num, "AFT");
'num' characters are copied from after the cursor in text 'src' and stored in text 'dst'.
 If no cursor in present then 'num' characters are copied from the start of 'src'.
 If 'num' is larger than the number of characters available in 'src' then only the available characters are copied.
IIf 'num' is negative, then the function performs as "BEF".
'dst' and 'src' can be the same text variable.
'src' is unmodified unless same text variable as 'dst'.
Supported data types:
'dst' => text variable | pointer to text variable
'src' => text variable | pointer to text variable | "string"
'num' => integer variable | pointer to integer variable | integer

"CUR" - Change Cursor Type
CALC(dst, src, type, "CUR");
The cursor in text 'src' is changed to type 'type' and the result is stored in text 'dst'.
If no cursor is present, then the new cursor is appended to the end.
'dst' and 'src' can be the same text variable.
'src' is unmodified unless same text variable as 'dst'.
 If 'type' is a string then the first character is taken as the cursor type.
Supported data types:
'dst' => text variable | pointer to text variable
'src' => text variable | pointer to text variable | "string"
'type' => integer variable | pointer to integer variable | integer | text variable | pointer to text variable |
"string"

"LEN" - Get Text Length
CALC(len, src, num, "LEN");
 The length of text 'src' plus 'num' is stored in variable 'len'.
 Cursor characters are not included in the length.
'src' is unmodified.
 Supported data types:
'len' => integer variable | pointer to integer variable | float variable | pointer to a float variable
'src' => text variable | pointer to text variable | "string"
'num' => integer variable | pointer to integer variable | integer | float variable | pointer to a float variable |
float

"LOC" - Get Cursor Location
CALC(loc, src, num, "LOC");
The location of the cursor in text 'src' plus 'num' is stored in variable 'loc'.
If no cursor is present then a value of 0 is used.
'src' is unmodified.
Supported data types:
'loc' => integer variable | pointer to integer variable | float variable | pointer to a float variable
'src' => text variable | pointer to text variable | "string"
'num' => integer variable | pointer to integer variable | integer | float variable | pointer to a float variable |
float

"TYPE" - Get Cursor Type
CALC(type, src, 0, "TYPE");
 The cursor type in text 'src' is stored in variable 'type'.
 If no cursor is present then a value of 0 is used.
'src' is unmodified.
Supported data types:
'type' => integer variable | pointer to integer variable | float variable | pointer to a float variable
'src' => text variable | pointer to text variable | "string"

"FIND" - Find Location of Text1 in Text2
CALC(loc, src1, src2, "FIND");
The first location of the match of text 'src2' (needle) in text 'src1' (haystack) is returned in 'loc'.
If no matches are found then -1 is returned in 'loc'.
Cursor characters are not included in the calculation.
'src1' and 'src2' are unmodified.
Supported data types:
'loc' => integer variable | pointer to integer variable | float variable | pointer to a float variable
'src1' => text variable | pointer to text variable | "string"
'src2' => text variable | pointer to text variable | "string"

"IFIND" - Find Location of Case Insensitive Text1 in Text2
CALC(loc, src1, src2, "FIND");
 The first location of the case insensitive match of text 'src2' (needle) in text 'src1' (haystack)
 is returned in 'loc'
If no case insensitive matches are found then -1 is returned in 'loc'.
Cursor characters are not included in the calculation.

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 30 of 50

http://www.itrontft.com

'src1' and 'src2' are unmodified.
Supported data types:
'loc' => integer variable | pointer to integer variable | float variable | pointer to a float variable
'src1' => text variable | pointer to text variable | "string"
'src2' => text variable | pointer to text variable | "string"

"REM" - Remove Every Text1 in Text2
CALC(dst, src1, src2, "REM");
 Remove every occurrence of text 'src2' (needle) from text 'src1' (haystack) and store the result
 text in 'dst'.
'dst' and 'src1' can be the same text variable.
'src1' and 'src2' are unmodified unless same text variable as 'dst'.
Supported data types:
'dst' => text variable | pointer to text variable
'src1' => text variable | pointer to text variable | "string"
'src2' => text variable | pointer to text variable | "string"

"IREM" - Remove Every Case Insensitive Text1 in Text2
CALC(dst, src1, src2, "IREM");
Remove every case insensitive occurrence of text 'src2' (needle) from text 'src1' (haystack) and store the
result text in 'dst'.
'dst' and 'src1' can be the same text variable.
'src1' and 'src2' are unmodified unless same text variable as 'dst'.
Supported data types:
'dst' => text variable | pointer to text variable
'src1' => text variable | pointer to text variable | "string"
'src2' => text variable | pointer to text variable | "string"

"SPLIT" - Split Text at Character
CALC(dst, src, char, "SPLIT");
CALC(num, src, char, "SPLIT");
Split the text 'src' at the character 'char' storing the text after 'char' back into 'src' and storing the text before
'char' into 'dst' or converting to number 'num'.
If no 'char' is present then the whole of 'src' is processed.
If 'char' is a string then the first character is taken as the split character.
'src' is modified during this operation.
Supported data types:
'dst' => text variable | pointer to text variable
'num' => integer variable | pointer to integer variable | float variable | pointer to a float variable
'src' => text variable | pointer to text variable | "string"
'char' => integer variable | pointer to integer variable | integer | text variable | pointer to text variable |
"string"

"PIXX" - Get Width of Entity
CALC(size, ent, num, "PIXX");
 The display width in pixels of entity 'ent' plus 'num' is stored in 'size'.
 Note, variables do not have a size and return 0. Text, image, draw, touch keys, and pages do have sizes.
Supported data types:
'size' => integer variable | pointer to integer variable | float variable | pointer to a float variable
'ent' => entity name | pointer to entity name
'num' => integer variable | pointer to integer variable | float variable | pointer to a float variable

"PIXY" - Get Height of Entity
CALC(size, ent, num, "PIXY");
 The display height in pixels of entity 'ent' plus 'num' is stored in 'size'.
 Note, variables do not have a size and return 0. Text, image, draw, touch keys, and pages do have sizes.
 Supported data types:
'size' => integer variable | pointer to integer variable | float variable | pointer to a float variable
'ent' => entity name | pointer to entity name
'num' => integer variable | pointer to integer variable | float variable | pointer to a float variable

Operational v37 except Trig functions Sin, Cos, Tan, CoTan TBA.

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 31 of 50

http://www.itrontft.com

Reserved Words - 17
iSMART TFT Reserved Words

Words Description
; Terminate command
;; Refresh current page
ac97 audio buffer. adaptor connects to CN4
action Specify action point as Down or Up. Used in Key settings

active

I2C -- used Master (M), Slave (S) or None (N)
Key I/O -- high is active "\\000000" > "\\FFFFFF"
PWM / ADC -- None (N), 1 (1), 2 (2), both (12)
RTC -- enable (Y) or disable (N)

adc1 analogue to digital converter 1 processes at 1000 samples per second
adc2 analogue to digital converter 2 processes at 1000 samples per second
addr address pair where =nn write, =nn+1 read. Used with i2c interfaces
as1 async1 interface
as2 async2 interface
AS1RXC Async1 Receive Character
AS2RXC Async2 Receive Character
avg1 number of samples taken and averaged for ADC1 (1-16)
avg2 number of samples taken and averaged for ADC2 (1-16)
back Specify the back colour of the object
baud = 110 to 115200. Used for asynchronous interfaces
bled LED Backlight 0=OFF 100=FULL or use 1-99
buzz buzzer output
CALC Quick calculation and text manipulation eg. CALC(Result, Var1, Var2, Act)
calib1 set user function to use for calibrate/scale ADC1
calib2 set user function to use for calibrate/scale ADC2
calibrate used in setup(system) to calibrate touch screen
CAN CANBUS adaptor - 1Mhz - adaptor connects to CN3
CNTDAYS increments every day (0-n) Used with Runtime counter
CNTHOURS increments every hour (0-23) Used with Runtime counter
CNTMILLI increments every millisecond (0-999) Used with Runtime counter
CNTMINS increments every minute (0-59) Used with Runtime counter
CNTSECS increments every second (0-59) Used with Runtime counter
CNTK00-CNTK23 I/O counters which can be set up using interrupt and trig parameters
col Specify the text or border color
curRel Specify the relative placement of an object
cycle1 cycle1 value in microseconds
cycle2 cycle2 value in microseconds
data = 5, 6, 7, 8 Used for asynchronous interfaces
dbg debugger interface
DBGRXC Debug Receive Character
debounce Specify the time delay to allow a key
DEL Delete a page, entity eg DEL(Name)
delay Specify the time delay for auto repeat
delay delay in microseconds between pwm1 and pwm2
DELETED list of deleted entities
DRAW Create box, circle, line, pixel, shape eg DRAW(Name,X,Y,Style)
duty1 value as a percentage of High period
duty2 value as a percentage of High period
edge uses Rising(R) or Falling(F) clock edge
EEPROM internal EEPROM -- parameter storage using extended variables VarE
encode single byte of ASCII (s), 2 byte UNI (w), UTF8 (m) Used in system settings
end byte returned when no data left in buffer. Used with spi and i2c interfaces
FLOAT High resolution calculation data type
flow flow control - none (N), hardware (H), software (S) XON XOFF Used with asynchronous interfaces
font The ASCII based + extended fonts
format various characters specify the date and time format Used the real time clock and date settings
FPROG.....FEND Store SDHC menu and image files in onboard flash
FUNC Declare a set of commands eg FUNC(Name) {...}
HIDE Hide a page, entity eg HIDE(Name)
i2c i2c interface
I2CRXC I2C Receive Character
IF Evaluate condition and do func1 if true, func2 if false eg IF(Var~Var?Func1:Func2)
image Specify a background image for the page
IMG Image placement and manipulation eg IMG(Name,Source,Style)
INC Include the contents of another menu, style or setup file eg INC(FileName)
inp high is input, low output“\\000000” >“\\FFFFFF” Used with Key I/O interfaces
INT If interrupt triggered do function eg INT(Name,Buffer, Function)
KEY Designation of touch or key matrix
keyb high is scanned keyboard connection
keyio K23 is the highest order bit and K0 the lowest
LIB Load picture or font into library eg LIB(Name,Source)
LIBARY list of all items stored in the libary
LOAD Multi function copy page, variable N2--N.. to Name. eg LOAD(Name,N2,N3,N..)
LOOP Loop for a specified number of times eg LOOP(Name,Var){...}
maxLen Specify the maximum number per row (Max 512)
maxRows Specify the maximum number of rows (Max 32)
NAND NAND Flash supports a Proprietary structure
PAGE Specify contents of page eg PAGE(Name,Style) {...)
parity = Odd, Even, None, Mark, Space Used with asynchronous interfaces
POINTER Images data type
poll1 poll1 is High (H) or Low (L) on first phase
poll2 poll2 is High (H) or Low (L) on first phase

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 32 of 50

http://www.itrontft.com

POSN Position cursor or re-position named entity eg POSN(X,Y,Page/Name,Style)
posx Specify the absolute x position on the screen
posY Specify the absolute y position on screen
proc process on receive string terminator = “;” or \\0D or other
procDel delete(Y) or keep(N) termination character.
PTR entity pointer
pwm pwm1 , pwm2 - 160Hz to 1MHz
repeat Specify the time delay for auto repeat
RESET Clears -- eeprom variable, delete list, library or reset system
rotate Specify the rotation of the text, shape, image or screen 0,90,180,270
rs2 rs232 interface
rs4 rs485 interface
RS2RXC RS232 Receive Character
RS4RXC RS485 Receive Character
rsync rsync interface
RTC Real time clock and date
RTCDAYS numeric variable containing days (1-31)
RTCHOURS numeric variable containing hours (0-23)
RTCMINS numeric variable containing minutes (0-59)
RTCMONTHS numeric variable containing month (1-12)
RTCSECS numeric variable containing seconds (0-59)
RTCYEARS numeric variable containing year (1900-2099)
RUN Run a function or user code eg RUN(Func)
RUNTIME Runtime Counter The runtime counter is continually counting. It is independent of the real time clock
rxb set size of receive buffer in bytes. Used with asynchronous, spi and i2c interfaces
rxf use none (N) or hardware (H) MB. Used with spi interfaces
rxi set receive buffer interface active (Y or C or N) Used with asynchronous, spi and i2c interfaces
rxo set receive data order (M or L) Used with spi interfaces
rxs use select input \RSS. (Y or N) Used with spi interfaces
S16 signed 16 bit integer data type
S32 signed 32 bit integer data type
S8 signed 8 bit integer data type
scale The image can be cropped to centre or fit
sdhc SD Card (1G or 4G+) FAT32 format - 8 character file names, no directory. Not 2G
set quick set up combination Used with asynchronous, spi and i2c interfaces
SHOW Show a page, entity eg SHOW(Name)
size Size multiplier ie 24x24 to 48x48
sizeX Specify the maximum width
sizeY Specify the maximum height
speed set transmit speed in master mode Used with spi interfaces
spi spi interface
stop equals num (1, 15, 2 15 is 1.5 bits) Used with asynchronous interfaces
STYLE Predefine parameters for page entities and variables eg STYLE(Name,Type) {...}
SYSTEM Overall settings of the TFT
test show (showTouchAreas) or hide (hideTouchAreas) outline of touch areas on screen.
TEXT Define text eg TEXT(Name,Text,Style)
TOUCH A preset style for TOUCH Key
TOUCHX contains the last touch Y co-ordinate
TOUCHY contains the last touch X co-ordinate
trig high is trigger interrupt
tsync tsync interface
txb set size of transmit buffer in bytes. Used with asynchronous, spi and i2c interfaces
txf none (N) or hardware (H) HB in Master mode. Used with spi interfaces
txi set transmit buffer interface (Y or E or N). Used with AS1/AS2, spi and i2c interfaces
txo set transmit data order (M or L). Used with spi interfaces
txs use select output \TSS in master mode (Y or N). Used with spi interfaces
type Specify the type of shape to draw or the source of key data (touch or external)
U16 unsigned 16 bit integer data type
U32 unsigned 32 bit integer data type
U8 unsigned 8 bit integer data type
usbcom usb com port
usbmsd usb mass storage device
VAR Variable having a certain style and a default value
VAR Create a variable of a specified type with a default value eg VAR(Name,Value,Style)
WAIT Wait specified milliseconds before next. eg WAIT(Time)
wdog watchdog OFF(0), 100ms(100), 500ms(500), 1sec(1000)
width Specify the border width of the shape

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 33 of 50

http://www.itrontft.com

Styles List - 18
Styles
Styles enable you to maintain a common theme throughout your application and reduce the number of parameters required to be passed in the
Page, text, draw, image and key commands. A style is only used during the creation of an entity. When updating a text or an image, the style is
omitted from the command.
Plan: Style parameters can be updated using the dot operator except sizes and watchdog values.
 LOAD(Txt32ASC.font,"ASCII8"); LOAD(Txt32ASC.rotate,varRotate); where varRotate holds 0,90,180 or 270.

Command Description
VAR(Name,Value,Style) VAR Data Styles

Specify your own style for integer, float, pointer or text or use a built in style name
STYLE(stVar, Data)
 {
 type = U8; // U8, U16, U32 - unsigned 8, 16 and 32 bit integer
 // S8, S16, S32 - signed 8, 16, 32 bit integer
 // TEXT for text strings
 // FLOAT for higher resolution calculation
 // POINTER for use with images
 length=64; // For text, specify the length from 1 to 8192, default =32
 decimal=3; // Specify the number of decimal places when type is float. Range 0 to 7, default=2
 format="dd mm YY"; //Specify RTC format. see RTC page for format character types
 location=SDRAM; //Specify the data location as SDRAM (default) or EEPROM
 }

Built In Styles (Add E for EEPROM types Example FLT4E)
The following pre defined 'built in' style names are available
 U8/U8E - type = U8, U16/U16E - type = U16, U32/U32E - type = U32
 S8/S8E - type = S8, S16/S16E - type = S16, S32/S32E - type = S32
 PTR/PTRE - type = pointer, TXT/TXTE - type = TEXT, length=32
 FLT1/FLT1E - type = float, decimal = 1, FLT2/FLT2E - type = float, decimal = 2
 FLT3/FLT3E - type = float, decimal = 3, FLT4/FLT4E - type = float, decimal = 4

Operational

PAGE(Name,Style) {…….} Page Styles
The style defines the page size, position and background.
STYLE(stPage,Page) //create a style name and define as type Page
 {
 sizeX=480; //specify width of page 1 to 3* LCD width
 sizeY=272; //specify height of page 1 to 3* LCD height
 posX=0; //specify the absolute X position of page on screen. -4 * LCD width to 4 * LCD width
 posY=0; //specify the absolute Y position of page on screen. -4 * LCD height to 4 * LCD height
 back=black; //specify background colour of page as hex \\000000 to \\FFFFFF or colour name
 image=pageimg; //specify background image of page as SDHC path or entity name using LIB.
 }

Page with screen size or smaller.
TEXT(Name,Text,Style) TEXT Styles

Fonts are available using single byte, 2 byte and UTF8 multi-byte coding.
Built in ASCII fonts have the reserved names Ascii8, Ascii16, Ascii32 (case sensitive).
Other library fonts are uploaded using the LIB command and have file type .FNT
These are available for download from the character fonts web page at www.itrontft.com.
Unique Font Overlay
It is possible to overlay one font over another to enable single byte operation with ASCII from 20H to 7FH and
Cyrillic, Greek, Hebrew, Bengali, Tamil, Thai or Katakana from 80H to FFH. The LIB command is used to load
the extended font at 0080H instead of it's normal UNICODE location. The style for a text can then specify
font="MyASCII,MyThai"; causing the Thai to overlap the ASCII from 80H to FFH.

STYLE(Txt32ASC16,TEXT) //assign a name for the style like Txt32ASC16
 {
 font="ASC16B,16THAI"; //define fonts using built in or preloaded .FNT files via LIB command
 size=2; //a 24x24 font is expanded to a 48x48 font. default=1
 col=white; //“\\000000” to “\\FFFFFF” or reserved words from the colour chart.
 maxLen=64; //maximum length of text. default =32, maximum=512
 maxRows=4; //maximum number of rows=32 where new line code \\0D\\0A is used.
 rotate=90; //rotation relative to screen 0, 90, 180, 270. default=0
 curRel=CC; //specify placement relative to cursor. CC Centre Centre , TC Top Centre,
 } //BC Bottom Centre, LC Left Centre, RC Right Centre, TL Top Left,
 // BL Bottom Left, TR Top Right, BR Bottom Right

Operational

DRAW(Name,X,Y,Style) Draw or update a Line, Box or Circle of size X,Y or Pixel at X,Y. The entities can be an outline or filled.
Draw Styles
It is possible to specify transparency values with colours if the colour is entered as a 32-bit hex number the top
8 bits specify the alpha blending level.
col = \\aarrggbb; back = \\aarrggbb; where aa = alpha level.
For example, col = \\80FFFF00; gives 50% transparent yellow.

STYLE(stCircleRed,DRAW)
 {
 type=B; //Specify the type of shape to draw. type = B or Box , C or Circle, L or Line, P or Pixel
 col=red; //Specify the border colour of the shape. Use hex, colour name + alpha
 width=1; //Specify the border width of the shape default = 1
 back=\\00FF66; //Specify the fill colour of the shape. Use hex, colour name + alpha
 maxX=160; // Declare the maximum width allowing for rotation
 maxY=40; // Declare the maximum height allowing for rotation
 rotate=0; // Specify the rotation of the shape with respect to the screen. 0,90,180,270
 curRel=CC; //specify placement relative to cursor. CC Centre Centre , TC Top Centre,
 } //BC Bottom Centre, LC Left Centre, RC Right Centre, TL Top Left,
 // BL Bottom Left, TR Top Right, BR Bottom Right

Operational

IMG(Name,Source,X,Y,Style) Image Styles
The image may be larger than the size specified so it is necessary to define how it will be scaled.
STYLE(MyImage,Image)
 {
 scale=100; // The image is scaled down or up by a percentage.
 //Supports 5% steps below 100 and 100% steps above 100.

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 34 of 50

http://www.itrontft.com
http://www.itrontft.com

 maxX=160; // Declare the maximum width allowing for rotation
 maxY=40; // Declare the maximum height allowing for rotation
 rotate=0; // Specify the rotation of the shape with respect to the screen. 0,90,180,270
 curRel=CC; // specify placement relative to cursor. CC Centre Centre , TC Top Centre,
 } // BC Bottom Centre, LC Left Centre, RC Right Centre, TL Top Left,
 // BL Bottom Left, TR Top Right, BR Bottom Right

Operational except scale C.

KEY(Name,Function,X,Y,Style) KEY Styles
Specify the source of key data.
If you require a dual action, specify 2 keys at the same location, one with action D and one with U.

STYLE(myTouch,key)
 {
 type=touch; //specify 'touch' screen or external 'keyio'
 debounce=250; //Specify the time delay to allow a key press to stabilise. Value in milliseconds.
 delay=1000; //Specify the time delay before auto repeat occurs. Value in milliseconds. 0=off.
 repeat=500; //Specify the repeat period if the key is held down. Value in milliseconds
 action = D; // Specify D or Down and U or Up. Specify the up or down action point for the key.
 curRel=CC; //specify touch key placement relative to cursor. CC Centre Centre , TC Top Centre,
 } //BC Bottom Centre, LC Left Centre, RC Right Centre, TL Top Left,
 // BL Bottom Left, TR Top Right, BR Bottom Right

Operational for stylus. Touch with finger requires large key plus sampling parameter to be added.

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 35 of 50

http://www.itrontft.com

Setup List - 19
Setup
Setups for the interfaces are shown below with an explanation of the parameters.

Parameters can be updated using the dot operator
 LOAD(RS4.baud,19200);
 LOAD(RS4.proc,"CR");

Interface Setup
System setup(system)

 {
 bled=100; //set backlight to OFF=0 or ON=100, 1-99 brightness levels available v4 PCB, v32
 // firmware
 wdog=100; //set the watchdog time out period in milliseconds.
 rotate=0; //set the rotation of the screen with respect to PCB
 test=showTouchAreas; //hide or show touch areas during product development
 calibrate=n; //initialise the internal touch screen calibration screen. This automatically returns to
 // the previous page on completion. If it is necessary to abort then send
 //setup(system) {calibrate=n};
 encode=s; //ASCII handling with extended unicode/utf8 in occasional strings
 }

RS232 Quick Setup
setup(RS2)
 {
 set="96NC" //quick set up combination "48, 96, 192, 384, 768, 1150 with parity N, O, E and Command
 //option".
 }

Setup
setup(RS2)
 {
 baud=38450; //num = 110 to 115200. Any value can be set to allow trimming for deviating clocks i.e. 38450
 data=6; //num = 5, 6, 7, 8
 stop=15; //num = 1, 15, 2 - note 15 is 1.5 bits
 parity=N; //first letter of Odd, Even, None, Mark, Space
 rxi=Y; //set receive interface as active (Y), a command processing source (C) or disable (N). Default = N
 proc=“;”; //process on receive termination character. See below
 procDel=Y; //remove or keep the termination character(s) before processing
 rxb=8246; //set size of receive buffer in bytes. Default = 8192 bytes
 txi=Y; //set transmit interface as active (Y), to echo command processing (E) or disable (N)
 txb=8350; //set size of transmit buffer in bytes. Default = 8192 bytes
 encode=s; //set s=ASCII, w=UNICODE, m=UTF8 or use sr, wr and mr specifying raw data bytes.
 flow=N; //none, hardware RTS/CTS or DTR/DSR, software XON XOFF
 }

RS485 Quick Setup
setup(RS4)
 {
 set="96NC" //quick set up combination "48,96,192,384,768,1150 with parity N,O,E and Command option".
 }

Setup
setup(RS4)
 {
 baud=38450; //num = 110 to 115200. Any value can be set to allow trimming for deviating clocks i.e. 38450
 data=6; //num = 5, 6, 7, 8
 stop=15; //num = 1, 15, 2 - note 15 is 1.5 bits
 parity=N; //first letter of Odd, Even, None, Mark, Space
 rxi=Y; //set receive interface as active (Y), a command processing source (C) or disable (N). Default = N
 proc=“;”; //process on receive termination character(s). See below
 procDel=Y; //remove or keep the termination character(s) before processing
 rxb=8196; //set size of receive buffer in bytes. Default = 8192 bytes
 txi=Y; //set transmit interface as active (Y), to echo command processing (E) or disable (N)
 txb=8196; //set size of transmit buffer in bytes. Default = 8192 bytes
 encode=s; //set s=ASCII, w=UNICODE, m=UTF8 or use sr, wr and mr specifying raw data bytes.
 flow=n; //set n=none, s=software XON,XOFF
 }

AS1, AS2, DBG Quick Setup
setup(AS1) //can setup AS1, AS2 or DBG
 {
 set="96NC" //quick set up combination "48,96,192,384,768,1150 with parity N, O, E and Command option".
 }

Setup
setup(AS1) //can setup AS1, AS2 or DBG
 {
 baud=38450; //num = 110 to 115200. Any value can be set to allow trimming for deviating clocks i.e. 38450
 data=7; //num = 5, 6, 7, 8
 stop=2; //num = 1, 15, 2 - note 15 is 1.5 bits
 parity=N; //first letter of Odd, Even, None, Mark, Space
 rxi=Y; //set receive buffer interface as active (Y), a command processing source (C) or disable (N).
 //Default = N
 proc=“;”; //process on receive termination character(s). See below
 procDel=Y; //remove or keep the termination character(s) before processing
 rxb=8246; //set size of receive buffer in bytes. Default = 8192 bytes
 txi=Y; //set transmit buffer interface as active (Y), to echo command processing (E) or disable (N)
 txb=8246; //set size of transmit buffer in bytes. Default = 8192 bytes
 encode=s; //set s=ASCII, w=UNICODE, m=UTF8 or use sr, wr and mr specifying raw data bytes.
 flow=N; //none, hardware RTS/CTS or DTR/DSR, software XON XOFF
 }

CANBUS Adaptor setup(AS1)
 {
 baud=38400; //num = 110 to 115200. Any value can be set to allow trimming for deviating clocks i.e. 38450
 data=8; //num = 5, 6, 7, 8

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 36 of 50

http://www.itrontft.com

 stop=1; //num = 1, 15, 2 - note 15 is 1.5 bits
 parity=N; //first letter of Odd, Even, None, Mark, Space
 rxi=C; //set receive buffer interface as active (Y), a command processing source (C) or disable (N).
 //Default = N
 encode=sr; //set s=ASCII, w=UNICODE, m=UTF8 or use sr, wr and mr specifying raw data bytes.
 flow=H; //none, hardware RTS/CTS or DTR/DSR, software XON XOFF
 }

SPI Quick Setup
setup(spi)
 {
 set="MR100"; //quick set up as Master/Slave, edge R/F, Command and speed 20-1000
 }

Setup
setup(spi)
 {
 active=M; //set as Master, Slave or None for both transmit and receive. Default = N
 edge=R; //uses Rising or Falling clock edge. Default = R
 speed=100; //set transmit speed value in kilobits/sec from 20 to 1000 for master mode. Default = 100
 rxi=Y; //set receive buffer interface as active (Y), a command processing source (C) or disable (N).
 //Default = N
 proc=“;”; //process on receive termination character(s). See below.
 procDel=Y; //remove or keep the termination character(s) before processing
 encode=s; //set s=ASCII, w=UNICODE, m=UTF8 or use sr, wr and mr specifying raw data bytes.
 rxb= 8264; //set size of receive buffer in bytes. Default = 8192 bytes
 rxo=M; //set receive data order as most significant bit (M) or least significant bit (L). Default = M
 rxf= N; //use none or hardware MB to signify receive buffer full. Default = N
 rxs=N; //use select input \RSS. Default = N
 txi=Y; //set transmit buffer interface as active (Y), to echo command processing (E) or disable (N)
 end="nn" //byte returned when no data left in display's spi transmit buffer and as a dummy byte to
 //send if required.
 txb=8244; //set size of transmit buffer in bytes. Default = 8192 bytes
 txo=M; //set transmit data order as most significant bit (M) or least significant bit (L). Default = M
 txf=N; //none or hardware HB used to signify halt transmit in master mode. Default = N
 txs=N; //use select output \TSS in master mode. Default = N
 }

TWI / I2C Quick Setup
setup(i2c)
 {
 set = "C7E"; //quick set up of I2C - Slave with Command and Address
 }

Setup
setup(i2c)
 {
 addr="3E"; //address pair where nn for write and nn+1 for read with range 02 to FE.
 end="\\00"; //byte returned when no data left in display's i2c transmit buffer
 active=S; //set as Master (M) or Slave (S) or disabled (N). Default = N
 speed=100; //set transmit speed value in kilobits/sec from 20 to 400 for master mode. Default = 100
 rxi=Y; //set receive buffer interface as active (Y), a command processing source (C) or disable (N).
 //Default = N
 proc=“;”; //process on receive termination character(s)
 procDel=Y; //remove or keep the termination character(s) before processing
 encode=s; //s= ASCII single byte, w=UNICODE 2 byte, m=UTF8 multibyte
 rxb=8192; //set size of receive buffer in bytes. Default = 8192 bytes
 txi=Y; //set transmit buffer interface as active (Y), to echo command processing (E) or disable (N)
 txb=8186; //set size of transmit buffer in bytes. Default = 8192 bytes
 }

KEY I/O setup(keyio)
 {
 active=\\0000FF; //high is active “\\000000” >“\\FFFFFF”, default is inactive
 inp=\\00000C; //high is input, low is output “\\000000” >“\\FFFFFF”
 trig=\\000001; //high is trigger interrupt “\\000000” >“\\FFFFFF” as defined by edge
 edge=\\000000; //high is rising edge, low is falling edge “\\000000” >“\\FFFFFF”
 keyb=\\000FF0; //high is scanned keyboard connection “\\000000”>"\\FFFFFF”
 }

PWM controller setup(pwm)
 {
 active=12; //use 12 to synchronize PWM 1 and 2. N=none
 pol1=H; //polarity = High or Low on first phase of PWM1
 pol2=H; //polarity = High or Low on first phase of PWM2
 cycle1=“200”; //cycle time in microseconds of PWM1. Range 160Hz to 1MHz
 cycle2 = “300”; //cycle time in microseconds of PWM2. Range 160Hz to 1MHz
 duty1= “44”; //value of first phase as a percentage for PWM1 = 1-99
 duty2= “56”; //value of first phase as a percentage for PWM2 = 1-99
 delay= “50”; //delay between first phase of PWM1 and first phase of PWM2 in microseconds
 }

ADC - A to D converters setup(adc)
 {
 active=12; //set none, ADC1, ADC2 or both
 calib1=0.4; //set value to use for calibration/scaling of ADC1
 calib2=0.2; //set value to use for calibration/scaling of ADC2
 avg1=16; //number of samples read and then averaged for ADC1
 avg2=16 //number of samples read and then averaged for ADC2
 }

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 37 of 50

http://www.itrontft.com

Character Fonts - 20
Character Fonts

Compact Narrow Fonts Wide Rounded Fonts
ASCII Base Page ASCII + European
PC437 (USA - European Standard) Cyrillic
PC850 (Multilingual) Greek
PC852 (Latin 2) Arabic
PC858 (Multilingual) Hebrew
PC860 (Portuguese) Bengali
PC863 (Canadian French) Tamil
PC865 (Nordic) Thai
PC866 (Cyrillic) Chinese/Japanese/Korean TBA
WPC1252 Hangul TBA
Katakana Katakana

You can include the character fonts required for an application by downloading the attached files and use the LIB command to store them
in memory. You can setup your system to process text as single byte, 2 byte UNICODE or multibyte UTF8. See the LIB command for installing
fonts. System fonts ASCII8,ASCII16 and ASCII32 are built in. The wide rounded fonts are preferred for higher quality designs.

It is possible to overlay one font over another to enable single byte operation with ASCII from 20H to 7FH and Cyrillic, Greek, Hebrew, Bengali,
Tamil, Thai or Katakana from 80H to FFH. The LIB command is used to load the extended font at 0080H instead of it's normal UNICODE location.
The style for a text can then specify font="MyASCII,MyThai"; causing the Thai to overlap the ASCII from 80H to FFH

Example
LIB(ascii24,”sdhc/asc_24.fnt”); //upload ascii 24 pixel wide font
LIB(cur24,”sdhc/cur_24.fnt?start=\\0080”); //upload currency font to 80H

In text style…
font=”ascii24,cur24”; //cur24 overlays ascii24 at 80H-8FH

STANDARD ASCII - 20H to 7FH
Standard ASCII text in the range 20H to 7FH can by directly typed from the keyboard.
System fonts named ASCII8, ASCII16, ASCII32 are pre-installed.
Example TEXT(txt1, "Hello World", stTXT); //single byte access to 20H to 7FH ASCII characters

EXTENDED ASCII - 20H to FFH
2/ When using single byte ASCII in the range 20H to 7FH, you can access extended characters from 80H to FFH using hex code like \\AB
Example TEXT(txt1, "1. AB\\B0CDEF \\AB s", stTXT); //single byte access to 80H to FFH

UNICODE and UTF8
3/ When using single byte ASCII in the range 20H to 7FH, you can access UNICODE characters by using hex code like \\w0D7F
or a UTF8 character using hex code like \\mC2AB. The symbols <....> are used where more than one character is coded.
Examples
 TEXT(txt2, "2. AB\\w00B0CDEF \\w00AB", stTXT); // UNICODE double byte access to 0080H to FFFFH
 TEXT(txt3, "3. AB\\mC2B0CDEF \\mC2AB", stTXT); // UTF8 multi byte access to 80H to FFFFH
 TEXT(txt5, "5. AB\\sB0C\\w<00440045>F \\w00AB", stTXT); // <....> are used for long hex strings \\s is used for single byte in a UNICODE or UTF8 encoded system
 TEXT(txt7, "\\<372E204142B04344454620AB>", stTXT); // string of single byte hex in the range 20H to 80H
 TEXT(txt8, "\\w<0038002e00200041004200B00043004400450046002000AB>", stTXT);
 TEXT(txt9, "\\m<392E204142C2B04344454620C2AB>", stTXT);

COMPACT NARROW FONTS (Single Byte Range 20H to FFH or UNICODE Range 0020H to 00FFH)
The ASCII base page is included automatically at 20H-7FH and the other fonts are automatically loaded to 80H to FFH.
This gives a single byte range of 20H to FFH.

ASCII Base Page (96
characters) PC437 (128 characters) PC850 (128 characters)

5x7 8x16 16x32

 5x7 8x16 16x32 5x7 8x16 16x32

PC852 (128 characters) PC858 (128 characters) PC860 (128 characters)

5x7 8x16 16x32 5x7 8x16 16x32 5x7 8x16 16x32

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 38 of 50

http://www.itrontft.com

PC863 (128 characters) PC865 (128 characters) PC866 (128 characters)

5x7 8x16 16x32 5x7 8x16 16x32 5x7 8x16 16x32

WPC1252 (128 characters) Katakana (128 characters)

5x7 8x16 16x32 5x7 8x16 16x32

WIDE ROUNDED Fonts (Single Byte Range 20H to FFH or UNICODE Range 0020H to FFFFH)
When loading these fonts into library, it is necessary to specify the offset address for the first character of each
font table if a variation from UNICODE is required. The supplementary characters above FFFF are not supported in UTF8.

ASCII + European (467 characters)

16px (3.2mm)

24px (4.8mm)

32px (6.4mm)

40px (8mm)

48px (9.6mm)

60px (12mm)

72px (14.4mm)

Unicode Range
0020 - 0217

Cyrillic (226 characters)

16px (3.2mm)

24px (4.8mm)

32px (6.4mm)

Unicode Range
0401 - 04F9

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 39 of 50

http://www.itrontft.com

Greek (105 characters)

16px (3.2mm)

24px (4.8mm)

32px (6.4mm)

Unicode Range
0374 - 03F3

Arabic (194 characters)

16px (3.2mm)

24px (4.8mm)

32px (6.4mm)

Unicode Range
060C - 06F9

Hebrew (82 characters)

16px (3.2mm)

24px (4.8mm)

32px (6.4mm)

Unicode Range
0591 - 05F4

Bengali (89 characters)

16px (3.2mm)

24px (4.8mm)

32px (6.4mm)

Unicode Range
0981 - 09FA

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 40 of 50

http://www.itrontft.com

Tamil (61 characters)

16px (3.2mm)

24px (4.8mm)

32px (6.4mm)
Unicode Range
0B82 - 0BF2

Thai (87 characters)

16px (3.2mm)

24px (4.8mm)

32px (6.4mm)

Unicode Range

0E01 - 0E5B

Chinese/Japanese/Korean (21151 characters) TBA

16x16 (3.2mm)

24x24 (4.8mm)

32x32 (6.4mm)

Unicode Range
3300 - 9FA5

Hangul (11172 characters) TBA

16x16 (3.2mm)

24x24 (4.8mm)

32x32 (6.4mm)

Unicode Range
AC00 - D7A3

Katakana (94 characters)

16x16 (3.2mm)

24x24 (4.8mm)

32x32 (6.4mm)

Unicode Range
30A1 - 30FE

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 41 of 50

http://www.itrontft.com

Colour Chart - 21

Colour Chart

The colour chart below shows the built in colours of the TFT module. To clarify the reference name of a colour, hover over the hex code.

#4682B4
steelblue

#041690
royalblue

#6495ED
cornflowerblue

#B0C4DE
lightsteelblue

#7B68EE
mediumslateblue

#6A5ACD
slateblue

#483D8B
darkslateblue

#191970
midnightblue

#000080
navy

#00008B
darkblue

#0000CD
mediumblue

#0000FF
blue

#1E90FF
dodgerblue

#00BFFF
deepskyblue

#87CEFA
lightskyblue

#87CEEB
skyblue

#ADD8E6
lightblue

#B0E0E6
powderblue

#F0FFFF
azure

#E0FFFF
lightcyan

#AFEEEE
paleturquoise

#48D1CC
mediumturquoise

#20B2AA
lightseagreen

#008B8B
darkcyan

#008080
teal

#5F9EA0
cadetblue

#00CED1
darkturquoise

#00FFFF
aqua

#00FFFF
cyan

#40E0D0
turquoise

#7FFFD4
aquamarine

#66CDAA
mediumaquamarine

#8FBC8F
darkseagreen

#3CB371
mediumseagreen

#2E8B57
seagreen

#006400
darkgreen

#008000
green

#228B22
forestgreen

#32CD32
limegreen

#00FF00
lime

#7FFF00
chartreuse

#7CFC00
lawngreen

#ADFF2F
greenyellow

#9ACD32
yellowgreen

#98FB98
palegreen

#90EE90
lightgreen

#00FF7F
springgreen

#00FA9A
mediumspringgreen

#556B2F
darkolivegreen

#6B8E23
olivedrab

#808000
olive

#BDB76B
darkkhaki

#B8860B
darkgoldenrod

#DAA520
goldenrod

#FFD700
gold

#FFFF00
yellow

#F0E68C
khaki

#EEE8AA
palegoldenrod

#FFEBCD
blanchedalmond

#FFE4B5
moccasin

#F5DEB3
wheat

#FFDEAD
navajowhite

#DEB887
burlywood

#D2B48C
tan

#BC8F8F
rosybrown

#A0522D
sienna

#8B4513
saddlebrown

#D2691E
chocolate

#CD853F
peru

#F4A460
sandybrown

#8B0000
darkred

#800000
maroon

#A52A2A
brown

#B22222
firebrick

#CD5C5C
indianred

#F08080
lightcoral

#FA8072
salmon

#E9967A
darksalmon

#FFA07A
lightsalmon

#FF7F50
coral

#FF6347
tomato

#FF8C00
darkorange

#FFA500
orange

#FF4500
orangered

#DC143C
crimson

#FF0000
red

#FF1493
deeppink

#FF00FF
fuchsia

#FF00FF
magenta

#FF69B4
hotpink

#FFB6C1
lightpink

#FFC0CB
pink

#DB7093
palevioletred

#C71585
mediumvioletred

#800080
purple

#8B008B
darkmagenta

#9370DB
mediumpurple

#8A2BE2
blueviolet

#4B0082
indigo

#9400D3
darkviolet

#9932CC
darkorchid

#BA55D3
mediumorchid

#DA70D6
orchid

#EE82EE
violet

#DDA0DD
plum

#D8BFD8
thistle

#E6E6FA
lavender

#F8F8FF
ghostwhite

#F0F8FF
aliceblue

#F5FFFA
mintcream

#F0FFF0
honeydew

#FAFAD2
lightgoldenrodyellow

#FFFACD
lemonchiffon

#FFF8DC
cornsilk

#FFFFE0
lightyellow

#FFFFF0
ivory

#FFFAF0
floralwhite

#FAF0E6
linen

#FDF5E6
oldlace

#FAEBD7
antiquewhite

#FFE4C4
bisque

#FFDAB9
peachpuff

#FFEFD5
papayawhip

#F5F5DC
beige

#FFF5EE
seashell

#FFF0F5
lavenderblush

#FFE4E1
mistyrose

#FFFAFA
snow

#FFFFFF
white

#F5F5F5
whitesmoke

#DCDCDC
gainsboro

#D3D3D3
lightgrey

#C0C0C0
silver

#A9A9A9
darkgray

#808080
gray

#778899
lightslategray

#708090
slategray

#696969
dimgray

#2F4F4F
darkslategray

#000000
black

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 42 of 50

http://www.itrontft.com

Getting Started - 22
Getting Stared with iSMART TFTs
If you received a development kit with USB cable and SD card inserted into a xxx-K612A1TU module, just plug in the USB cable between a PC and
the display module. The boot code and operational software will load and then run the file TU480A.mnu from the SD card.
The supplied demonstration sequences through 4 screens. The elevator and aircon screens are working applications so you can press the touch
keyboard to operate. After 20 seconds of inaction, the demonstration moves on to the next screen.

After experimenting with the demonstration, review the basic applications below. Do not hesitate to send us an email for further explanation. Key
issues to understand..

1/ The system uses text commands rather than difficult to remember hex codes.
2/ All objects and functions are given a name for easy future referencing.
 Interfaces are given pre-defined names like RS2 for RS232 and RS4 for RS485.
3/ Commonly used parameters are stored in 'styles' like in HTML web pages.
This reduces the number of commands from 250 in a conventional TFT module
 to just 25 in iSMART TFTs with equal or better functionality.

A typical menu file's commands will be constructed and ordered as follows (detail removed for clarity):
LIB... //load in images and fonts from memory into library
LIB...
INC.. //include another menu file which may have global styles and setup.

STYLE... //define styles for pages, text, images used in this file
STYLE...

SETUP.. //setup system and external interfaces like RS232
SETUP...

VAR... //create variables used for calculation, temporary storage and pointing
VAR...

PAGE(MAIN,styleMain) { //create a main page with text, images and associated keys
 POSN... TEXT //place text at a specified position on screen
 POSN... IMG //place icon / image at a specified position on screen
 POSN... KEY //place a touch key area on screen and define function to call
}

PAGE(SUB,stylePage1) { //create other pages
 POSN... TEXT //place text at a specified position on screen
 POSN... IMG //place icon / image at a specified position on screen

 LOOP(CntLoop,FOREVER) { IF(CNTMINS=0,FncZero); } // function calls associated with page
}

FUNC(FncZero) { LOAD(RS2,"Hour Count = ",CNTHRS,"\\0A\\0D"); //send message to host via RS232
FUNC(MyFunc) {} //other functions associated with key press or interfaces

INT... // Initialise interrupts for slave timers and inputs...not host interface - use setup with v39 software

SHOW(MAIN); // After pre-loading all style parameters, pages and functions, start the application with first page.
After this point, functionality follows page key presses and functions or incoming command data from host or interfaces.
When creating an entity for the first time, include the style parameter. To update the entity omit the style parameter.
If you specify the style again, you will create a copy.

Entities are layered on the screen from back to front in the order they are listed in the menu with the screen background defined in the page style.
If you want a button image to change colour, include one colour button in your background and the other colour button as a separate image over
the top. To change colour, just HIDE and SHOW the top button. This technique is used in the air conditioner project.

The examples below can be cut and pasted from their box into a text editor (NotePad).
Save the file as TU480A.mnu and copy onto the SD card.
Plug it into the iSMART TFT module, apply power and view the result.

Hello World from Internal Menu
// Menu file TU480A.MNU for Demo using TU480X272C and v32 firmware update
// Simple demo to display text

STYLE(BlackPg, Page) { Back=black;} //black background
STYLE(Txt32White, Text)
{
font=Ascii32; col=white; maxLen=32; maxRows=1; curRel=CC; //white system text 32 pixels high
}

PAGE(MainPg, BlackPg)
{
POSN(240, 136); // Set writing position to centre of display
TEXT(Text1, "Hello World", Txt32White); // Draw text
}

SHOW(MainPg);
//end

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 43 of 50

http://www.itrontft.com

Hello World via RS232 IN with touch key to send RS232 OUT
// Menu file TU480A.MNU for Demo using TU480X272C
// 07-Oct-2010
// This example is identical to example 1 except RS232 is defined
// using setup for command mode at19200 baud, no parity

STYLE(BlackPg, Page) //define page style
 {
 Back=black; //background is black
 }

STYLE(Txt32White, Text) //define text style
{
font=Ascii32; //use built in font
col=white; //text colour is white
maxLen=32;
maxRows=1;
curRel=CC; //centre position
}

VAR(mytxtVar,"Hello People",TXT); //create a text variable to hold up to 32 characters

PAGE(MainPg, BlackPg)
{
POSN(240, 136); // Set writing position to centre of display
TEXT(Txt1, mytxtVar, Txt32White); // Create text area at the writing position
KEY(Key1,[LOAD(RS2,mytxtVar,"\\0D\\0A");],470,270,TOUCH); //Touch screen to sends content of mytxtVar plus CRLF out of RS232 port
}

SETUP(RS2)
{
set = "192NC"; // 19200 bps, no parity, command mode
}

SHOW(MainPg);

// Send text command to the display via RS232 : LOAD(mytxtVar, "Hello World");;\\0D
// Note :-
// Sending 2 semicolons is equivalent to SHOW (currentpage);
// All command lines must be followed by CR (\\0D)
//If your system can send binary \\0D can be sent as 0DH

Images loaded, flashed and moved

// Menu file TU480A.MNU for Demo using TU480X272C
// 11-Oct-2010
// This example places 2 images on the display with one flashed and moved.

LIB(Image1,"SDHC/lift1.bmp?back=\\0000CD"); //load image1 from SD card
LIB(Image2,"SDHC/lift2.bmp?back=\\0000CD"); //load image2 from SD card
STYLE(BluePg, Page) {back=\\0000CD;} //define style of page with blue background
STYLE(StImg, Image) {curRel=CC;} //centre image with respect to POSN cursor

PAGE(MainPg, BluePg)
{
POSN(199, 136); IMG(LeftImg, Image1,172,240,StImg); // Position and draw 1st image on display
POSN(396, 136); IMG(RightImg, Image2,172,240,StImg); // Position and draw 2nd image on the display
}

SHOW(MainPg); //show page

WAIT(2000); //wait 2 seconds
HIDE(LeftImg);; //hide left image and refresh page
WAIT(2000);
SHOW(LeftImg);; //show left image and refresh page
WAIT(2000);
POSN(396,136,LeftImg);; //position left image under right image and refresh page
// Sending 2 semicolons is equivalent to SHOW (currentpage);
//You will see a blue border around the right image due to background transparency differences.

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 44 of 50

http://www.itrontft.com

Example Projects - 23

Air Conditioning Control System

The Start button is stored separately and placed over the top of the stop button.
The commands HIDE and SHOW are used to control visibility.
The text areas are the ’21’ , the ’29’ , the ‘24.5’ , the ’monitoring…’
The touch areas cover the buttons (+ - + - SAVE CAL TIME STOP).
The changed HEAT and COOL parameters are stored in EEPROM
Download Images <zip>

Air Conditioning Control System Code using V30 software
(Highlight, cut and paste below this line)

// Menu file TU480A.MNU for Air Conditioner using TU480X272C
// Updated 20-Sep-2010

// --
// Air Conditioner Page
// --
LIB(libImgAcBg, "SDHC/AirConBg.bmp"); // Load background picture
LIB(libImgAcStart, "SDHC/AirConSt.bmp?back=\\76bbfe"); // Load start button + transparency
LIB(fntAscii32, "SDHC/asc_32.fnt"); // Load Ascii Font 32
LIB(fntAscii16, "SDHC/asc_16b.fnt"); // Load Ascii Font 16

STYLE(stAcMainPg, Page) { back=black; image=libImgAcBg; }
STYLE(stTxt8Wht64, Text) { font=fntAscii16; col=white; maxLen=64; maxRows=1; curRel=CC; }
STYLE(stTxt32Yel06, Text) { font=fntAscii32; col=yellow; maxLen=6; maxRows=1; curRel=CC; }
STYLE(stTxt32Wht64, Text) { font=fntAscii32; col=white; maxLen=64; maxRows=1; curRel=CC; }
STYLE(stGenImg,Image) {curRel=CC;}

VAR(varAcHeat, 26, U8E);
VAR(varAcCool, 20, U8E);
VAR(varAcAct, 32.7, FLT1);
VAR(varAcDif, 0.196, FLT1);
VAR(varAcTmp, 0.0, FLT1);
VAR(varAcCnt, 0, U8);

VAR(varRunDemo, 0, U8);
VAR(varSecCnt, 0, U8);
VAR(varCnt2, 1, U8);
VAR(varDemoNum, 0, U8);

PAGE(pgAirConMain, stAcMainPg)
{
// Heating Upper Limits
POSN(238, 80); TEXT(txtAcHeat, varAcHeat, stTxt32Wht64); // Draw text for upper limit
POSN(-57, +0); KEY(keyAcHeatDn, fncAcHeatDn, 45, 33, TOUCH);
POSN(+109, +0); KEY(keyAcHeatUp, fncAcHeatUp, 40, 33, TOUCH);

// Cooling Lower Limts
POSN(238, +52); TEXT(txtAcCool, varAcCool, stTxt32Wht64); // Draw text for lower limit
POSN(-57, +0); KEY(keyAcCoolDn, fncAcCoolDn, 45, 31, TOUCH);
POSN(+109, +0); KEY(keyAcCoolUp, fncAcCoolUp, 40, 31, TOUCH);

POSN(-130, +117); TEXT(txtAcMsg, "Set Limits or press START", stTxt8Wht64); // Draw text for prompts
POSN(238, 182); TEXT(txtAcAct, varAcAct, stTxt32Yel06); // Draw text for actual value
POSN(400, 208); KEY(keyAcStop, fncAcStop, 95, 95, TOUCH); // Stop

// Load green start button over top of red stop button and start touch area
IMG(imgAcStart, libImgAcStart, 95, 95, stGenImg);
KEY(keyAcStart, fncAcStart, 95, 95, TOUCH); // Start

// Commands run as loop on page
LOOP(lpAcMain, FOREVER)
{
IF(varAcCnt != CNTSECS ? fncAcUpd);
RUN(fncDemoUpdate);
}
}

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 45 of 50

http://www.itrontft.com

FUNC(fncDemoUpdate) { IF(varRunDemo == 1 ? fncDemoUpdate2); } // Call from each demo
FUNC(fncDemoPause) { LOAD(varCnt2, 20); } // Call from demo to pause change

FUNC(fncDemoUpdate2) { IF(CNTSECS != varSecCnt ? fncSecTimer); }
FUNC(fncSecTimer) { LOAD(varSecCnt, CNTSECS); CALC(varCnt2, varCnt2, 1, "-"); IF (varCnt2 == 0 ? fncNextDemo); }
FUNC(fncNextDemo)
{
LOAD(varCnt2, 5);
CALC(varDemoNum, varDemoNum, 1, "+");
CALC(varDemoNum, varDemoNum, 4, "%"); // Num Demo Screens
IF(varDemoNum == 0 ? fncInfo);
IF(varDemoNum == 1 ? fncLift);
IF(varDemoNum == 2 ? fncAirCon);
IF(varDemoNum == 3 ? fncTennis);
IF(varDemoNum == 4 ? fncFonts);

}

FUNC(fncAcHeatUp) { RUN(fncDemoPause);CALC(varAcHeat,varAcHeat,1,"+");TEXT(txtAcHeat,varAcHeat);; }

FUNC(fncAcHeatDn)
{
RUN(fncDemoPause);CALC(varAcHeat,varAcHeat,1,"-");TEXT(txtAcHeat,varAcHeat);IF(varAcCool=varAcHeat?fncAcCoolDn);;
}

FUNC(fncAcCoolUp)
{
RUN(fncDemoPause);CALC(varAcCool,varAcCool,1,"+");TEXT(txtAcCool,varAcCool);IF(varAcHeat=varAcCool?fncAcHeatUp);;
}

FUNC(fncAcCoolDn) { RUN(fncDemoPause);CALC(varAcCool,varAcCool,1,"-");TEXT(txtAcCool,varAcCool);; }

FUNC(fncAcUpd)
{
LOAD(varAcCnt,CNTSECS);
CALC(varAcAct,varAcAct,varAcDif,"+");
IF(txtAcMsg!="Set Limits or press START"?fncAcOn:fncAcOff);
TEXT(txtAcAct,varAcAct);;
}

FUNC(fncAcOn) { IF(varAcAct>varAcHeat?fncAcCool);IF(varAcAct<varAcCool?fncAcHeat); }
FUNC(fncAcCool) { TEXT(txtAcMsg,"Running... COOLING");LOAD(varAcDif,-0.27); }
FUNC(fncAcHeat) { TEXT(txtAcMsg,"Running... HEATING");LOAD(varAcDif,+0.27); }

FUNC(fncAcOff)
{
CALC(varAcTmp,varAcHeat,10,"+");
IF(varAcAct>varAcTmp?fncAcActHi);
CALC(varAcTmp,varAcCool,10,"-");
IF(varAcAct<varAcTmp?fncAcActLo);
}

FUNC(fncAcActHi) { LOAD(varAcDif,-0.12); }
FUNC(fncAcActLo) { LOAD(varAcDif,+0.12); }
FUNC(fncAcStart) { RUN(fncDemoPause);HIDE(imgAcStart,keyAcStart);TEXT(txtAcMsg,"Running...");; }
FUNC(fncAcStop) { RUN(fncDemoPause);SHOW(imgAcStart,keyAcStart);TEXT(txtAcMsg,"Set Limits or press START");; }

//Run Main Page
SHOW(pgAirConMain);

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 46 of 50

http://www.itrontft.com

Elevator Control System

The user can select a floor and travel from any floor to another floor.
The arrow is selected according to direction.
Warning signs for doors opening and closing are used.
Variables are used to store the current floor and destination floor.
An RS232 interface could be added to communicate with other floor indicators.
Download Image Files <zip>

Elevator System Code using V30+ software
(Highlight, cut and paste below this line)
// Menu file TU480A.MNU for Elevator System using TU480X272C
// Updated 20-Sep-2010
// Floors are 15(15)..01(1), G(0), P1(-1), B2(-2)

// Load images into the library
LIB(libImgNum0,"SDHC/Lift0.bmp?back=\\0000CD"); // Load Number 0
LIB(libImgNum1,"SDHC/Lift1.bmp?back=\\0000CD"); // Load Number 1
LIB(libImgNum2,"SDHC/Lift2.bmp?back=\\0000CD"); // Load Number 2
LIB(libImgNum3,"SDHC/Lift3.bmp?back=\\0000CD"); // Load Number 3
LIB(libImgNum4,"SDHC/Lift4.bmp?back=\\0000CD"); // Load Number 4
LIB(libImgNum5,"SDHC/Lift5.bmp?back=\\0000CD"); // Load Number 5
LIB(libImgNum6,"SDHC/Lift6.bmp?back=\\0000CD"); // Load Number 6
LIB(libImgNum7,"SDHC/Lift7.bmp?back=\\0000CD"); // Load Number 7
LIB(libImgNum8,"SDHC/Lift8.bmp?back=\\0000CD"); // Load Number 8
LIB(libImgNum9,"SDHC/Lift9.bmp?back=\\0000CD"); // Load Number 9
LIB(libImgBChar,"SDHC/LiftB.bmp?back=\\0000CD"); // Load Character B
LIB(libImgGChar,"SDHC/LiftG.bmp?back=\\0000CD"); // Load Character G
LIB(libImgPChar,"SDHC/LiftP.bmp?back=\\0000CD"); // Load Character P
LIB(libImgDTri,"SDHC/LiftDown.bmp?back=\\0000CD"); // Load red triangle
LIB(libImgUTri,"SDHC/LiftUp.bmp?back=\\0000CD"); // Load green triangle
LIB(libImgPMTD,"SDHC/LiftClos.bmp"); // Load the warning message
LIB(libImgSelFlr,"SDHC/LiftSel.bmp"); //Load the Select Floor Page
LIB(libImgDoors,"SDHC/LiftOpen.bmp"); // Load the Doors Page

// Create styles

STYLE(stLiftPg,Page){back=\\0000CD;}
STYLE(stLiftMainPg,Page){back=\\0000CD;image=libImgSelFlr;}
STYLE(stGenImg,Image) {curRel=CC;}

LIB(fntAscii32, "SDHC/asc_32.fnt"); // Load Ascii Font 32

STYLE(stTxt32Wht64, Text) { font=fntAscii32; col=white; maxLen=64; maxRows=1; curRel=CC; }

// Create vars
VAR(vS8,0,S8);
VAR(ptrLiftArr>"libImgUTri",PTR);
VAR(ptrLiftTens>"libImgGChar",PTR);
VAR(ptrLiftOnes>"libImgNum1",PTR);
VAR(vReqd,0,S8);
VAR(vThis,0,S8);
VAR(vMove,0,U8);

VAR(varRunDemo, 0, U8);
VAR(varSecCnt, 0, U8);
VAR(varCnt2, 1, U8);
VAR(varDemoNum, 0, U8);

// Create Select Floor Page
PAGE(pgLiftMain,stLiftMainPg)
{
POSN(69,78); KEY(keyFlr15,[LOAD(vReqd,15);TEXT(txtCurFlr,"15");RUN(fncGo);],90,84,TOUCH);
POSN(184,+0); KEY(keyFlr14,[LOAD(vReqd,14);TEXT(txtCurFlr,"14");RUN(fncGo);],90,84,TOUCH);
POSN(298,+0); KEY(keyFlr13,[LOAD(vReqd,13);TEXT(txtCurFlr,"13");RUN(fncGo);],90,84,TOUCH);
POSN(409,+0); KEY(keyFlr12,[LOAD(vReqd,12);TEXT(txtCurFlr,"12");RUN(fncGo);],90,84,TOUCH);
POSN(69,178); KEY(keyFlr11,[LOAD(vReqd,11);TEXT(txtCurFlr,"11");RUN(fncGo);],90,84,TOUCH);
POSN(184,+0); KEY(keyFlrG, [LOAD(vReqd, 0);TEXT(txtCurFlr, "G");RUN(fncGo);],90,84,TOUCH);
POSN(298,+0); KEY(keyFlrP1,[LOAD(vReqd,-1);TEXT(txtCurFlr,"P1");RUN(fncGo);],90,84,TOUCH);
POSN(409,+0); KEY(keyFlrB2,[LOAD(vReqd,-2);TEXT(txtCurFlr,"B2");RUN(fncGo);],90,84,TOUCH);

POSN(160,249);TEXT(txtCurFlrLbl,"CURRENT FLOOR",stTxt32Wht64);
POSN(330,+0); TEXT(txtCurFlr,"G",stTxt32Wht64);

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 47 of 50

http://www.itrontft.com

LOOP(lpLiftMain,FOREVER) {RUN(fncDemoUpdate);}
}

FUNC(fncDemoUpdate) { IF(varRunDemo == 1 ? fncDemoUpdate2); } // Call from each demo
FUNC(fncDemoPause) { LOAD(varCnt2, 20); } // Call from demo to pause change

FUNC(fncDemoUpdate2) { IF(CNTSECS != varSecCnt ? fncSecTimer); }
FUNC(fncSecTimer) { LOAD(varSecCnt, CNTSECS); CALC(varCnt2, varCnt2, 1, "-"); IF (varCnt2 == 0 ? fncNextDemo); }
FUNC(fncNextDemo)
{
LOAD(varCnt2, 5);
CALC(varDemoNum, varDemoNum, 1, "+");
CALC(varDemoNum, varDemoNum, 4, "%"); // Num Demo Screens
IF(varDemoNum == 0 ? fncInfo);
IF(varDemoNum == 1 ? fncLift);
IF(varDemoNum == 2 ? fncAirCon);
IF(varDemoNum == 3 ? fncTennis);
IF(varDemoNum == 4 ? fncFonts);

}

// Level indication page
PAGE(pgIND,stLiftPg)
{
POSN(48,136);IMG(imgTri,ptrLiftArr,86,200,stGenImg);HIDE(imgTri);
POSN(199,+0);IMG(img10s,ptrLiftTens,172,240,stGenImg);
POSN(396,+0);IMG(img1s,ptrLiftOnes,172,240,stGenImg);
LOOP(lpLiftInd,FOREVER){IF(vMove=1?fncMove);}
}

// Lift is moving
FUNC(fncMove)
{
IF(vThis>vReqd?[LOAD(ptrLiftArr>"libImgDTri");IMG(imgTri,ptrLiftArr);SHOW(imgTri);RUN(fncShowFlr);CALC(vThis,vThis,1,"-");]);
IF(vThis<vReqd?[LOAD(ptrLiftArr>"libImgUTri");IMG(imgTri,ptrLiftArr);SHOW(imgTri);RUN(fncShowFlr);CALC(vThis,vThis,1,"+");]);
IF(vThis=vReqd?[LOAD(vMove,0);HIDE(imgTri);RUN(fncShowFlr);RUN(fncDoorOpen);SHOW(pgLiftMain);]);
}

// Start lift moving
FUNC(fncGo){RUN(fncDemoPause);LOAD(vMove,1);HIDE(imgTri);RUN(fncDoorClose);RUN(fncShowFlr);}

// Show Current Floor
FUNC(fncShowFlr)
{
IF(vThis>0?[CALC(vS8,vThis,10,"/");LOAD(ptrLiftTens>"libImgNum",vS8);CALC(vS8,vThis,10,"%");LOAD(ptrLiftOnes>"libImgNum",vS8);SHOW
(img10s,img1s);]);
IF(vThis=0 ?[LOAD(ptrLiftTens>"libImgGChar");SHOW(img10s);HIDE(img1s);]);
IF(vThis=-1?[LOAD(ptrLiftTens>"libImgPChar");LOAD(ptrLiftOnes>"libImgNum1");SHOW(img10s,img1s);]);
IF(vThis=-2?[LOAD(ptrLiftTens>"libImgBChar");LOAD(ptrLiftOnes>"libImgNum2");SHOW(img10s,img1s);]);
IMG(img10s,ptrLiftTens);IMG(img1s,ptrLiftOnes);
SHOW(pgIND);
WAIT(1000);
}

// Create Door Closing and Opening
FUNC(fncDoorClose){SHOW(pgShut);WAIT(400);SHOW(pgBlnk);WAIT(100);SHOW(pgShut);WAIT(400);SHOW(pgBlnk);WAIT(100);SHOW
(pgShut);WAIT(400);SHOW(pgBlnk);WAIT(100);}
FUNC(fncDoorOpen){SHOW(pgOpen);WAIT(400);SHOW(pgBlnk);WAIT(100);SHOW(pgOpen);WAIT(400);SHOW(pgBlnk);WAIT(100);SHOW
(pgOpen);WAIT(400);SHOW(pgBlnk);WAIT(100);}

// Create Door Closing / Opening / Blank Pages
PAGE(pgShut,stLiftPg){POSN(239,135);IMG(imgDC,libImgPMTD,480,272,stGenImg);}
PAGE(pgOpen,stLiftPg){POSN(239,135);IMG(imgDO,libImgDoors,480,272,stGenImg);}
PAGE(pgBlnk,stLiftPg){}

//RUN Main page
SHOW(pgLiftMain);

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 48 of 50

http://www.itrontft.com

FAQ's - 24
Frequently Asked Questions

Please send your questions to tech@noritake-itron.com
We will try to respond within 24 hours (Monday to Thursday)

Product Status and Availability
Start Programming
Memory and SDCard
Interfacing
Others

PRODUCT STATUS and AVAILABILITY
- What is the availability of this product ?
TU480X272C-K6121TU prototypes have been supplied to 122 companies in Europe from May 2010 Yes
The planned European market release: 16th September 2010 Yes
4.3inch available from the 5th October 2010 in volume. Yes
400 evaluation units of 4.3inch sold by end of Dec 2010.
Build 1600pcs in Q1/Q2 2011. Kitted awaiting production.
5.7 inch and 7inch prototypes will be available 20th December. Yes
3.5inch prototypes will be available in March 2011.
Linux operating system June 2011.

- What is the firmware development status of this product ?
We thank the 20 companies in Europe who helped beta testing
As at 12th Dec, 96% of the specified software functionality complete.
All existing customers are updated by email with latest release.
Customer identified bug fix is implemented in the next release (7 -14 days).
USB interfacing, arrays and structures are the main features still in development.
Future developments include automated animation plus audio and video processing.

START PROGRAMMING
- What is needed to start a development with this TFT? Need SW-Development, HW Development-Kit ?
Hardware: TFT module plus SDCard plus SD Card Reader
Software: PC wit text editor (notepad) and image editor (paint or paint-shop) or download free iDevTFT software.
The main objective of this product was to avoid expensive development tools for the customer.
At this time the TU480A.mnu file on the SDCard must be edited externally using the supplied adaptor via a reader.
The USB cable is used only for easy supply of power.
When the SDCard is removed, the PC may ask for a USB driver. Press CANCEL to this request.
Once USB has been developed, this will allow the user to edit files and send via the USB.
1GB SD and SDHC 4G, 8G, 16G or 32G card can be used for im480c1.bin or other files.
2G SD not supported.

- Can we program directly via the usb port into the flash ?
At the moment it is necessary to program and insert the SD card or send commands by async port.
The plan for USB is behind schedule but estimated from end Jan 2011
Production programming will then be possible via SDcard, serial port or USB.
The FPROG command will then transfer to onboard NAND flash for future power on initialisation without SD card.

- Is the TFT interpreting a text based program language without the user compiling the software?
This is correct, although the TFT module internally converts the data to achieve the necessary speed.
The uploaded text menu files are discarded for security.

-Is it possible to do screen captures for manuals or to run the interface on a PC as a simulator?
We supply iDevTFT for editing, local debugging and eventually PC simulation.

- Can we find a complete example?
Users can download examples from the web and the module can be supplied with pre-loaded applications.
We are showing an Aircon, Elevator Systems and Keyboard at this time, with others available soon.
These are updated as the firmware permits.

- Is the module available with Linux operating system?
We understand that some Linux has been written for this processor.
Work on a Linux solution is scheduled for mid 2011.
There are support issues for Linux.

- Why create a new operating system?
iSMART is a combined communications language and operating language.
This gives it unique capabilities not possible in other languages.
The compact command set is much easier to learn than other systems with 300 commands.

MEMORY and SD CARD
- Is it possible to download the text based program into Flash memory and then the TFT can be driven without SD-Card?
Yes, the SDCard is used as a convenient way of programming the module.
Like a CD on PC, you do not need the CD after installing a program.
The user can use instruction FPROG to store their program and images in FLASH.
Check the release for function FPROG for availability.

- The specification says that user code is generated at Noritake – will this be changed in the future?
The menu and function code is generated by the customer.
If the customer wants special functionality, we can produce a custom user software or (user code).
Some requests have been included as features in the main software.

- Can the module perform as a data logger via the SDCard ?
Yes, this is being developed for SD card only. EEPROM can store up to 50 variables only as standard.

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 49 of 50

http://www.itrontft.com

SD Card is the preferred method since customer can replace the card easily.
Customised firmware for writing to onboard 128M flash will be available.

-GUI systems usually require dynamic memory (malloc and free), which has to be handled very carefully
in real-time systems. Are you using dynamic memory and if so, what system are you using?
The freeing of memory is a key issue.
We do have an equivalent to malloc and free.
Entities are created in the library and data area assigned.
When a DEL command (free) is used, the entry is marked
for deletion however the actual clean up is under user control
using the RESET(DELETED) command.

INTERFACING
-How many RS232 serial ports can this support?
There are 4 async ports as standard
A CMOS level 4 line ON CN3 and 2 line on CN6 and CN12 where present.
RS232 4 line on CN1 (includes DTR/DSR or CTS/RTS selection)
The K611A version modules include an additional full duplex RS485 port on CN1 which is common with CN12.

-What sort of USB is fitted - host or device?
It is planned to have a CDC Device (COM Port).
Access to NAND will be write only for customer IPR security.
HID Print and Keyboard will also be available later.

OTHER
- What is the response time of a keystroke?
The touch screen has 2 modes of operation.
 1/ Calculate key on press or release allowing for defined debounce.
 2/ Auto repeat after a defined period (delay) and resent until released (repeat).
It is possible to define a function to run on key down or/and key up.
This can be sent to a host interface or used internally for data entry or navigation.

-How is language support handled - is it possible to switch sets of strings for different languages?
Strings can be declared as variables and pointed to any text object.
Text data is internally processed and stored in UNICODE even though just ASCII may be used.

-On the current product we use a hybrid character set that is mostly western European but includes
some central European characters, so we can use the same fonts for Polish.
How would different character sets be handled?
Unicode fonts are available for 90% of the world's languages.
You can request selected additions for Eu50.
The user can create their own image fonts on a paint software and reference them to UNICODE values

-The application slows down as each minute passes and after ~16mins the system crashes.
A STYLE is only used during the first creation of a TEXT, DRAW or IMAGE command.
When updating in a LOOP, omit the style other wise a new entity is created.
Every entity remembers it’s position and parameters

//Incorrect --- constantly creates new text entities

PAGE(Test, ST_Main)
 {
 LOOP(animation,FOREVER)
 {
 POSN(100,100); TEXT(mins,CNTMINS,STtext24Yw);
 POSN(150,100); TEXT(secs,CNTSECS,STtext24Yw);;
 }
 }

//Correct --- creates text entities once then updates

PAGE(Test, ST_Main)
 {
 POSN(100,100); TEXT(mins,CNTMINS,STtext24Yw);
 POSN(150,100); TEXT(secs,CNTSECS,STtext24Yw);
 LOOP(animation,FOREVER)
 {
 TEXT(mins,CNTMINS); //style omitted
 TEXT(secs,CNTSECS);; // refresh page
 }
 }

iSMART Noritake Itron 4.3" TFT Module

01/04/2011 www.itrontft.com Page 50 of 50

http://www.itrontft.com

