# **μΑ75150 RS-232C Dual Line Driver** Linear Division Interface Products ## Description The µA75150 is a monolithic dual line driver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232C. A rate of 20K bps can be transmitted with a full 2500 pF load. Other applications are in data transmission systems using relatively short single lines, in level translators, and for driving MOS devices. The logic input is compatible with most TTL and DTL families. Operation is from +12 V and -12 V power supplies. - Withstands Sustained Output Short Circuit To Any Low Impedance Voltage Between -25 V And +25 V - 2.0 μs Max Transition Time Through The +3.0 V To -3.0 V Transition Region Under Full 2500 pF Load - Inputs Compatible With Most TTL And DTL Families - Common Strobe Input - Inverting Output - Slew Rate Can Be Controlled With An External Capacitor At The Output - Standard Supply Voltages ± 12 V ## Absolute Maximum Ratings | Storage Temperature Range | | |-------------------------------------|-----------------| | Ceramic DIP | -65°C to +175°C | | Molded DIP and SO-8 | -65°C to +150°C | | Operating Temperature Range | 0°C to +70°C | | Lead Temperature | | | Ceramic DIP (soldering, 60 s) | 300°C | | Molded DIP and SO-8 | | | (soldering, 10 s) | 265°C | | Internal Power Dissipation 1, 2 | | | 14L-Molded DIP | 1.04 W | | 8L-Ceramic DIP | 1.30 W | | 8L-Molded DIP | 0.93 W | | SO-8 | 0.81 W | | Supply Voltage | ± 15 V | | Input Voltage <sup>3</sup> | 15 V | | Applied Output Voltage <sup>3</sup> | ± 25 V | | | | #### Notes - 1. $T_{J Max} = 175$ °C for the Ceramic DIP, and 150°C for the Molded DIP and SO-14. - 2. Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 14L-Ceramic DIP at 9.1 mW/°C, the 14L-Molded DIP at 8.3 mW/°C, and the SO-14 at 7.5 mW/°C. - 3. Voltage values are with respect to network ground. ## **Connection Diagram** 14-Lead DIP (Top View) Order Information Package Code Device Code Molded DIP 9A Package Description μA75150PC Connection Diagram 8-Lead DIP and SO-8 Package (Top View) #### Order Information Package Code Package Description **Device Code** μA75150RC 6T Ceramic DIP μA75150TC 9T Molded DIP μA75150SC KC Molded Surface Mount # Equivalent Circuit (1/2 of Circuit) Note Component values shown are nominal. # **Recommended Operating Conditions** | Symbol | Characteristics | Min | Тур | Max | Unit | |--------|-------------------------|--------|------|--------|------| | V + | Positive Supply Voltage | 10.8 | 12 | 13.2 | ٧ | | V – | Negative Supply Voltage | - 10.8 | - 12 | - 13.2 | ٧ | | Vi | Input Voltage | 0 | | 5.5 | ٧ | | Vo | Applied Output Voltage | | | ± 15 | ٧ | | TA | Operating Temperature | 0 | 25 | 70 | °C | $\mu$ A75150 Electrical Characteristics $T_A = 0$ to 70°C, unless otherwise specified. # DC Characteristics | Symbol | Characteristic | Condition | | Figure | Min | Typ <sup>2</sup> | Max | Unit | |-----------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------|------|------------------|------|----------| | V <sub>IH</sub> | Input Voltage HIGH | | | 1 | 2.0 | | | > | | V <sub>IL</sub> | Input Voltage LOW | | | 2 | | | 0.8 | ٧ | | V <sub>OH</sub> | Output Voltage HIGH | $V+ = 10.8$ V, $V- = -13.2$ V, $V_{IL} = 0.8$ V, $R_L = 3.0$ kΩ to 7.0 kΩ | | 2 | 5.0 | 8.0 | | ٧ | | V <sub>OL</sub> | Output Voltage LOW | $V_{CC} = \pm 10.8 \text{ V}, V_{IH} = 2.0 \text{ V},$<br>$R_L = 3.0 \text{ k}\Omega \text{ to } 7.0 \text{ k}\Omega$ | | 1 | | -8.0 | -5.0 | <b>V</b> | | I <sub>IH</sub> | Input Current HIGH | $V_{CC} = \pm 13.2 \text{ V},$<br>$V_{I} = 2.4 \text{ V}$ | Data Input | 3 | | 1.0 | 10 | μΑ | | | | | Strobe Input | | | 2.0 | 20 | | | I <sub>1L</sub> | Input Current LOW | $V_{CC} = \pm 13.2 \text{ V},$<br>$V_{I} = 0.4$ | Data Input | 3 | | -1.0 | -1.6 | mA | | | | | Strobe Input | | | -2.0 | -3.2 | | | los | Output Short<br>Circuit Current | V <sub>CC</sub> = ± 13.2 V | V <sub>O</sub> = 25 V | 4 | | 2.0 | | mA | | | | | V <sub>O</sub> = -25 V | | | -3.0 | | | | | | | $V_O = 0 \ V, \ V_I = 3.0 \ V$ | | | 15 | | | | | | | V <sub>O</sub> = 0 V, V <sub>I</sub> = 0 V | | | -15 | | | | I+ <sub>H</sub> | Positive Supply<br>Current HIGH | $V_{CC} = \pm 13.2 \text{ V},$ $V_{I} = 3.0 \text{ V}, R_{L} = 3.0 \text{ k}Ω,$ $T_{A} = 25^{\circ}\text{C}$ | | 5 | | 10 | 22 | mA | | I- <sub>Н</sub> | Negative Supply<br>Current HIGH | | | | | -1.0 | -10 | mA | | l+L | Positive Supply<br>Current LOW | $V_{CC} = \pm 13.2 \text{ V}$<br>$V_{I} = 3.0 \text{ V}, R_{L} = 3.0 \text{ k}\Omega,$ | | 5 | | 8.0 | 17 | mA | | I-L | Negative Supply<br>Current LOW | T <sub>A</sub> = 25°C | | | -9.0 | -20 | mA | | # AC Characteristics $V_{CC} = \pm 12 \text{ V}, T_A = 25 ^{\circ}\text{C}.$ | Symbol | Characteristic | Condition | Figure | Min | Typ <sup>2</sup> | Max | Unit | |------------------|-----------------------------------------------|-------------------------------------------------------------|--------|-----|------------------|-----|------| | t <sub>TLH</sub> | Transition Time, Output LOW to HIGH | C <sub>L</sub> = 2500 pF, | 6 | 0.2 | 1.4 | 2.0 | μs | | t <sub>THL</sub> | Transition Time, Output HIGH to LOW | $R_L = 3.0 \text{ k}\Omega \text{ to } 7.0 \text{ k}\Omega$ | | 0.2 | 1.5 | 2.0 | μs | | t <sub>TLH</sub> | Transition Time, Output LOW to HIGH | $C_L = 15 \text{ pF}, R_L = 7.0 \text{ k}\Omega$ | 6 | | 40 | | ns | | t <sub>THL</sub> | Transition Time, Output HIGH to LOW | | | | 20 | | ns | | t <sub>PLH</sub> | Propagation Delay Time,<br>Output LOW to HIGH | $C_L = 15$ pF, $R_L = 7.0$ k $\Omega$ | 6 | | 60 | | ns | | t <sub>PHL</sub> | Propagation Delay Time,<br>Output HIGH to LOW | | | | 45 | | ns | #### Notes The algebraic convention where the most positive (least negative) limit is designated as maximum is used in this data sheet for logic levels only, e.g., when -5.0 V is the maximum, the typical value is a more negative <sup>2.</sup> All typical values are at $V_{CC} = \pm 12$ V, $T_A = 25$ °C. # **Typical Performance Curves** ## Typical Output Current vs Applied Output Voltage ## **Test Circuits** # Figure 1 VIH, VOL Figure 3 I<sub>IH</sub>, I<sub>IL</sub> ## Notes - 1. Each input is tested separately. - 2. When testing $I_{\parallel H_1}$ the other input is at 3.0 V; when testing $I_{\parallel L_1}$ the other input is open. - 3. $I_{\mbox{\scriptsize OS}}$ is tested for both input conditions at each of the specified output conditions. # Figure 2 V<sub>IL</sub>, V<sub>OH</sub> (Note 1) # 3.0 V V+ V- (NOTE 3) | NOTE 3 | 105+ V0 | 105- 105 CR01681F Figure 5 I+H, I-H, I+L, I-L (Note 1) ### Notes - 1. Arrows indicate actual direction of current flow. Current into a terminal is - 2. The pulse generator has the following characteristics: duty cycle $\leq$ 50%, $Z_{\rm O} = 50~\Omega.$ 3. C<sub>L</sub> includes probe and jig capacitance. ## **Voltage Waveforms** Figure 6 Switching Characteristics