SHENZHEN CRYSTAL TECHNOLOGY INDUSTRIAL CO., LTD 433.92MHz SAW Resonator

Approved by:	
Checked by:	
Checked by.	
Issued by:	
issued by.	

SPECIFICATION

MODEL: QCC4A-SR433.92-50K

深圳市晶科鑫实业有限公司

SHENZHEN CRYSTAL TECHNOLOGY INDUSTRIAL CO., LTD.

Add: RM#1805, East Wing, Tian An Hi-tech Plaza Phase 2, Tian An Cyber Park Shenzhen, China Tel: (86) 755 88352809 88352810 Fax: (86) 755 88353718 88352499

E-mail: jolly@q-crystal.com HTTP://www.q-crystal.com

Page 1 of 4

SHENZHEN CRYSTAL TECHNOLOGY INDUSTRIAL CO., LTD 433.92MHz SAW Resonator

The SJK433A is a true one- port , surface- acoustic- wave(SAW) resonator in a low- profile QCC4A case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at 433.920 MHz.

1. Package Dimension (QCC4A)

Pin	Connection		
1	Input / Output		
3	Output / Input		
2/4	Case Ground		

Sign	Data(unit: mm)			
А	1.2			
В	8.0			
С	0.5			
D	1.4			
Е	5.0			
F	3.5			

2. Marking

XXXX

Color: Black or Blue

4. Typical Application Circuit

1) Typical Low-Power Transmitter Application

5. Typical Frequency Response

3. Equivalent LC Model and Test Circuit

2) Typical Local Oscillator Application

nzhen, China

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator

Add: RM#1805, East Wing, Tian An Hi-tech Plaza P temperature characteristics. Tel: (86) 755 88352809 88352810 Fax: (86) 755 88353718

88352499

E-mail: sjk@q-crystal.com HTTP://www.q-crystal.com

> Page 4 of 4

SHENZHEN CRYSTAL TECHNOLOGY INDUSTRIAL CO., LTD 433.92MHz *SAW Resonator*

7. Performance

7-1.Maximum Rating

Rating		Value	Units	
CW RF Power Dissipation	Р	0	dBm	
DC Voltage Between Terminals	V_{DC}	±30	V	
Storage Temperature Range	T _{sta}	-40 to +85	℃	

7-2 Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25°C)	Absolute Frequency	f _C	433.845	433.92	433.995	Center
	Tolerance from 433.920 MHz	Δ f _C		±50		
Insertion Loss		IL		1.5	1.8	dB
Quality Factor	Unloaded Q	Q _U		15974		Quality
	50 Ω Loaded Q	$Q_{\rm L}$		1900		
Temperature Stability	Turnover Temperature	T _O	25	40	55	Temperatu
	Turnover Frequency	f_{O}		fc		
	Frequency Temperature Coefficient	FTC		0.037		
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resist	ance Between Any Two Pins		1.0			МΩ
	Motional Resistance	R _M		19	23	RF Equivalent
RF Equivalent RLC Model	Motional Inductance	L_{M}		79.137		
	Motional Capacitance	C_{M}		1.8019		
	Pin 1 to Pin 2 Static Capacitance	Co		1.9		

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

NOTES:

- 1. The center frequency, f_C , is measured at the minimum IL point with the resonator in the 50Ω test system.
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- 3. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_0 , may be calculated from: $f = f_0 \left[1 FTC \left(T_0 T_0 \right)^2 \right]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.

Add: RM#1805, East Wing, Tian An Hi-tech Plaza Phase 2, Tian An Cyber Park Shenzhen, China

Tel: (86) 755 88352809 88352810 Fax: (86) 755 88353718 88352499

E-mail: sjk@q-crystal.com HTTP://www.q-crystal.com

Page 4 of 4

SHENZHEN CRYSTAL TECHNOLOGY INDUSTRIAL CO., LTD 433.92MHz SAW Resonator

- 6. Derived mathematically from one or more of the following directly measured parameters: fc, IL, 3 dB bandwidth, fc versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery please contact our sales offices.

Add: RM#1805, East Wing, Tian An Hi-tech Plaza Phase 2, Tian An Cyber Park Shenzhen, China Tel: (86) 755 88352809 88352810 Fax: (86) 755 88353718

Page 4 of 4

E-mail: sjk@q-crystal.com HTTP://www.q-crystal.com