

PIC16(L)F171X Memory Programming Specification

This document includes the programming specifications for the following devices:

- PIC16F1713 PIC16LF1713
- PIC16F1716 PIC16LF1716
- PIC16F1717 PIC16LF1717
- PIC16F1718 PIC16LF1718
- PIC16F1719 PIC16LF1719

1.0 OVERVIEW

The device can be programmed using either the high-voltage In-Circuit Serial Programming[™] (ICSP[™]) method or the low-voltage ICSP method.

1.1 Hardware Requirements

1.1.1 HIGH-VOLTAGE ICSP PROGRAMMING

In High-Voltage ICSP mode, the device requires two programmable power supplies: one for VDD and one for the MCLR/VPP pin.

1.1.2 LOW-VOLTAGE ICSP PROGRAMMING

In Low-Voltage ICSP mode, the PIC16(L)F171X devices can be programmed using a single VDD source in the operating range. The MCLR/VPP pin does not have to be brought to a different voltage, but can instead be left at the normal operating voltage.

1.1.2.1 Single-Supply ICSP Programming

The LVP bit in Configuration Word 2 enables single-supply (low-voltage) ICSP programming. The LVP bit defaults to a '1' (enabled) from the factory. The LVP bit may only be programmed to '0' by entering the High-Voltage ICSP mode, where the MCLR/VPP pin is raised to VIHH. Once the LVP bit is programmed to a '0', only the High-Voltage ICSP mode is available and only the High-Voltage ICSP mode can be used to program the device.

- Note 1: The High-Voltage ICSP mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR/ VPP pin.
 - 2: While in Low-Voltage ICSP mode, MCLR is always enabled, regardless of the MCLRE bit, and the port pin can no longer be used as a general purpose input.

1.2 Pin Utilization

Five pins are needed for ICSP programming. The pins are listed in Table 1-1.

During Programming Pin Name Function Pin Type **Pin Description** ICSPCI K **ICSPCLK** Clock Input – Schmitt Trigger Input I **ICSPDAT ICSPDAT** I/O Data Input/Output - Schmitt Trigger Input P(1) MCLR/VPP Program/Verify mode Program Mode Select/Programming Power Supply Vdd Р VDD Power Supply Vss Vss Ρ Ground

 TABLE 1-1:
 PIN DESCRIPTIONS DURING PROGRAMMING

Legend: I = Input, O = Output, P = Power

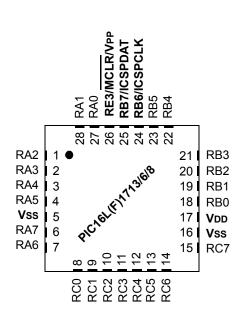
Note 1: The programming high <u>voltage</u> is internally generated. To activate the Program/Verify mode, high voltage needs to be applied to MCLR input. Since the MCLR is used for a level source, MCLR does not draw any significant current.

2.0 DEVICE PINOUTS

The pin diagrams for the PIC16L(F)1713/6/8 family are shown in Figure 2-1 and Figure 2-2.

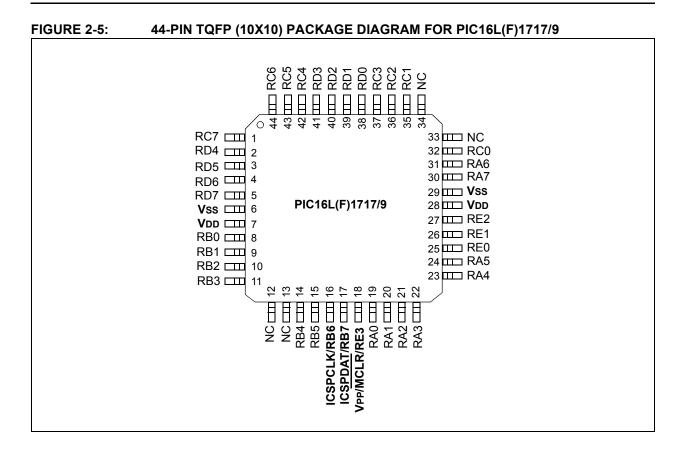
The pin diagrams for the PIC16L(F)1717/9 family are shown in Figure 2-3, Figure 2-4 and Figure 2-5.

The pins that are required for programming are listed in Table 1-1 and shown in bold lettering in the pin diagrams.


FIGURE 2-1: 28-PIN DIAGRAM FOR PIC16L(F)1713/6/8

PDIP, SOIC, TSSOP

FIGURE 2-2:


28-PIN PACKAGE DIAGRAM FOR PIC16L(F)1713/6/8

(U)QFN

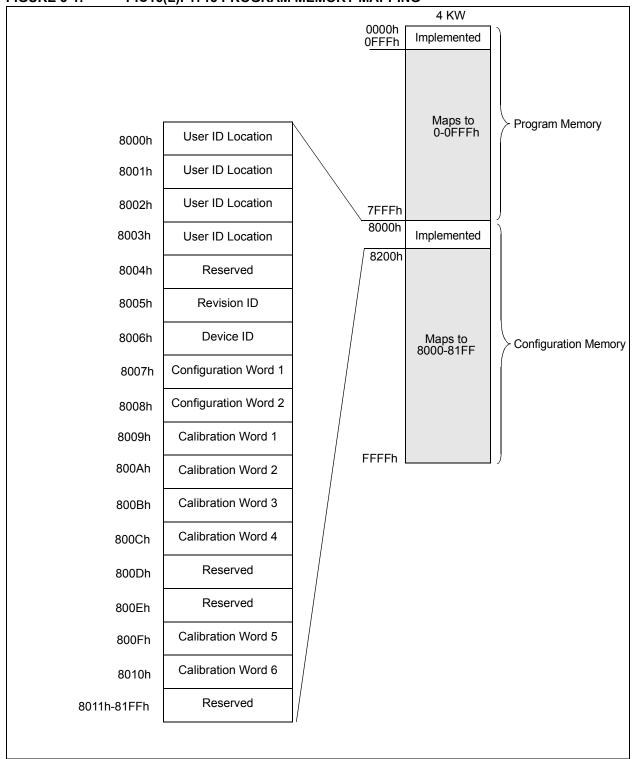
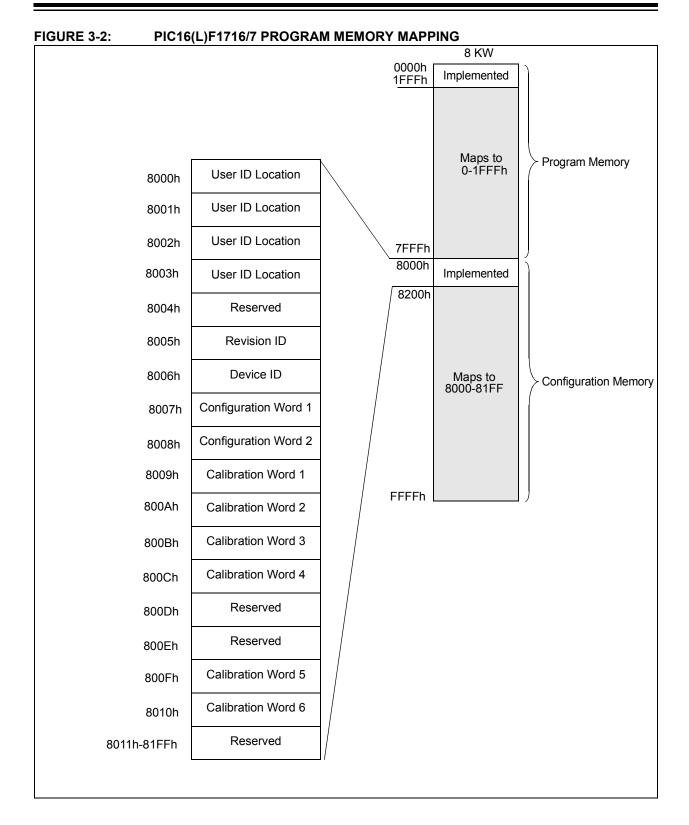
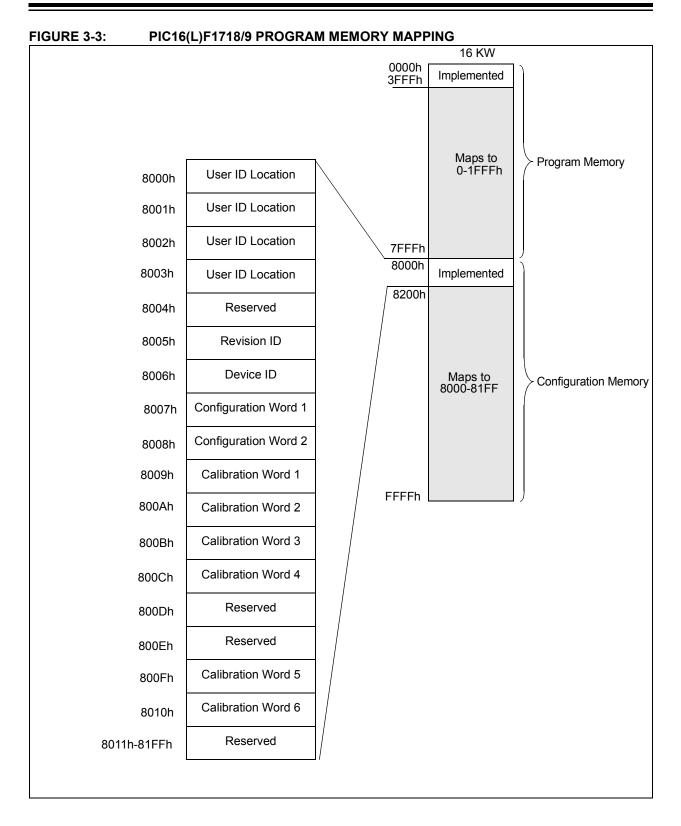

DS40001714C-page 2

FIGURE 2-3:	40-PIN DIP DIAGRAM FOR P	IC16L((F)1717/9	
		\bigcirc	40 RI	B7/ICSPDAT
	RA0 [] 2		39 RI	B6/ICSPCLK
	RA1 🛛 3		38 RE	35
	RA2 []4		37 RE	34
	RA3 🛛 5		36 RE	33
	RA4 []6		35 RE	
	RA5 🛛 7		34 RE	
	RE0 🛛 8	-	33 RI	
	RE1 9	17/9	32 V	
	RE2 10	171	31 V S	
		PIC16L(F)1717/9	30 RI	
		161	29 RI	
		PIC	28 RI	
	RA6 14		27 RI	
	RC0 15		26 R	
	RC1 16		25 R	
	RC2 17		24 R	
			23 R(22 RI	
	RD1 [20			
FIGURE 2-4:	40-PIN UQFN (5X5) PACKAG 용 업 정 2		GRAM FO	
GURE 2-4:				
FIGURE 2-4:	RC6 RC5 RC5	RD2 RD1	GRAM FO	
FIGURE 2-4:	RC6 RC5 RC5	RD2 RD1	GRAM FC GRAM FC SC3 SC3 SC3 SC3 SC4 SC4 SC4 SC5 SC4 SC4 SC4 SC4 SC4 SC4 SC4 SC4 SC4 SC4	
FIGURE 2-4:	RC7 1 04 66 86 16 RD4 12 RD5 13	RD2 RD1	GRAM FC GRAM FC SC3 SC3 SC4 SC3 SC3 SC4 SC3 SC4 SC3 SC4 SC4 SC4 SC4 SC4 SC4 SC4 SC4 SC4 SC4	
FIGURE 2-4:	RC7 RD4 RD5 RD6 4	RD2 RD1	GRAM FC GRAM FC SC3 SC SC3 SC SC3 SC3 SC3 SC3 SC3 SC3 SC3 SC3 SC3 S	801 RC0 199 RA6 188 RA7
FIGURE 2-4:	RC7 RD4 RD5 RD6 RD7 S S S S S S S S S S S S S S S S S S S	RD2 RD1		01 RC0 291 RA6 281 RA7 271 Vss
FIGURE 2-4:	RC7 RD4 RD5 RD6 4 RD7 Vss 6 9 9 8 9 8 8 8 8 8 8 9 8 8 8 8 8 8 8 8 8	361 RD2 351 RD1		01 RC0 291 RA6 281 RA7 271 Vss 261 Vdd
GURE 2-4:	RC7 RD4 RD5 RD6 4 RD7 Vss 6 PiC16i 8 8 0 1 1 9 8 8 8 8 1 9 8 8 8 8 1 9 8 8 8 8 8	361 RD2 351 RD1		801 RC0 891 RA6 881 RA7 271 Vss 261 Vbb 251 RE2 241 RE1
FIGURE 2-4:	RC7 RD4 RD5 RD6 4 RD7 S Vss 6 Vbb 7 RB0 8 RB1 9	361 RD2 351 RD1	GRAM F(003 BC C3 CC C3 CC C3 CC C3 CC C3 CC C4 CC C C C C C C C C C C C C C C C C C C	801 RC0 891 RA6 881 RA7 271 Vss 261 VDD 255 RE2 241 RE1 231 RE0
FIGURE 2-4:	RC7 RD4 RD5 RD6 4 RD7 Vss 6 PiC16i 8 8 0 1 1 9 8 8 8 8 1 9 8 8 8 8 1 9 8 8 8 8 8	361 RD2 351 RD1	GRAM F(003 BC 203 BC 2	801 RC0 891 RA6 881 RA7 271 Vss 261 VDD 251 RE2 241 RE1 231 RE0 222 RA5
FIGURE 2-4:	RC7 RD4 RD5 RD6 4 RD7 S Vss 6 Vbb 7 RB0 8 RB1 9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GRAM F(003 BC 203 BC 2	801 RC0 891 RA6 881 RA7 271 Vss 261 VDD 255 RE2 241 RE1 231 RE0
FIGURE 2-4:	RC7 RD4 RD5 RD6 RD7 Vss RD6 VbD RB0 RB1 9 RB2 10 C C C C C C C C C C	202 99 99 99 99 99 99 99 99 99 99 99 99 99	18 20 20 20 20 20 20 20 20 20 20	801 RC0 891 RA6 881 RA7 271 Vss 261 VDD 251 RE2 241 RE1 231 RE0 222 RA5
GURE 2-4:	RC7 RD4 RD5 RD6 RD7 Vss RD6 VbD RB0 RB1 9 RB2 10 C C C C C C C C C C	202 99 99 99 99 99 99 99 99 99 99 99 99 99	18 20 20 20 20 20 20 20 20 20 20	801 RC0 891 RA6 881 RA7 271 Vss 261 VDD 251 RE2 241 RE1 231 RE0 222 RA5
FIGURE 2-4:	RC7 RD4 RD5 RD6 RD7 Vss RD6 VbD RB0 RB1 9 RB2 10 C C C C C C C C C C	202 99 99 99 99 99 99 99 99 99 99 99 99 99	GRAM FC GRAM FC 33 RC3 34 RD0 33 RC3 34 RD0 34 RD0 34 RD0 34 RD0 34 RD0 37 RC3 22 22 22 22 22 22 22 22 22 22 22 22 22	801 RC0 891 RA6 881 RA7 271 Vss 261 VDD 251 RE2 241 RE1 231 RE0 222 RA5




3.0 MEMORY MAP

The memory is broken into two sections: program memory and configuration memory.

FIGURE 3-1: PIC16(L)F1713 PROGRAM MEMORY MAPPING

3.1 User ID Location

A user may store identification information (user ID) in four designated locations. The user ID locations are mapped to 8000h-8003h. Each location is 14 bits in length. Code protection has no effect on these memory locations. Each location may be read with code protection enabled or disabled.

Note:	MPLAB [®] IDE only displays the seven
	Least Significant bits (LSb) of each user
	ID location; the upper bits are not read. It
	is recommended that only the seven LSbs
	be used if MPLAB IDE is the primary tool
	used to read these addresses.

3.2 Device/Revision ID

The 14-bit device ID word is located at 8006h and the 14-bit revision ID is located at 8005h. These locations are read-only and cannot be erased or modified.

DEVICEID: DEVICE ID REGISTER⁽¹⁾ **REGISTER 3-1:** R R R R R R DEV<13:8> bit 13 bit 8 R R R R R R R R DEV<7:0> bit 7 bit 0 Legend: R = Readable bit '0' = Bit is cleared '1' = Bit is set x = Bit is unknown

bit 13-0 DEV<13:0>: Device ID bits

Refer to Table 3-1 to determine what these bits will read on which device. A value of 3FFFh is invalid.

Note 1: This location cannot be written.

REGISTER 3-2: REVISIONID: REVISION ID REGISTER⁽¹⁾

	Γ	R	R	R	R	R	R
				REV<	13:8>		
	ł	bit 13					bit 8
R	R	R	R	R	R	R	R
			REV<	:7:0>			
bit 7							bit 0
Legend:							
R	= Readable bit						

(0' = Bit is cleared (1' = Bit is set x = Bit is unknown

bit 13-0 **REV<13:0>:** Revision ID bits

These bits are used to identify the device revision.

Note 1: This location cannot be written.

TABLE 3-1: DEVICE ID VALUES

Device	Device ID	Revision ID
PIC16F1713	3049h	2xxxh
PIC16LF1713	304Bh	2xxxh
PIC16F1716	3048h	2xxxh
PIC16LF1716	304Ah	2xxxh
PIC16F1717	305Ch	2xxxh
PIC16LF1717	305Fh	2xxxh
PIC16F1718	305Bh	2xxxh
PIC16LF1718	305Eh	2xxxh
PIC16F1719	305Ah	2xxxh
PIC16LF1719	305Dh	2xxxh

3.3 Configuration Words

The device has two Configuration Words, Configuration Word 1 (8007h) and Configuration Word 2 (8008h). The individual bits within these Configuration Words are used to enable or disable device functions such as the Brown-out Reset, code protection and Power-up Timer.

3.4 Calibration Words

The internal calibration values are factory calibrated and stored in the Calibration Word locations. See Figure 3-1 for address information.

The Calibration Words do not participate in erase operations. The device can be erased without affecting the Calibration Words.

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1
		FCMEN	IESO	CLKOUTEN	BOREI	N<1:0>	
		bit 13					bit 8
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
	MCLRE	PWRTE		TE<1:0>	R/P-1	FOSC<2:0>	R/P-I
bit 7	MICLRE	FWRIE	VVD	12<1.02		FU3UN2.02	bit C
Legend:							
R = Readat	ole bit	P = Programma	ble bit	U = Unimpleme	ented bit, read	as '1'	
'0' = Bit is c		'1' = Bit is set		n = Value when			
bit 13	1 = ON F	-Safe Clock Moni ail-Safe Clock Mo ail-Safe Clock Mo	nitor is ena	bled			
bit 12	1 = ON I	al External Switch nternal/External S nternal/External S	witchover m				
bit 11	1 = OFF C	Clock Out Enable CLKOUT function i CLKOUT function i	s disabled.	I/O or oscillator fu on CLKOUT	nction on CLK	OUT	
bit 10-9	BOREN<1:0 11 = ON 10 = SLEEH 01 = SBODH 00 = OFF		d d during op lled by SBC	its ⁽¹⁾ peration and disabl DREN bit of the BC		er	
bit 8		nted: Read as '1'					
bit 7	CP: Code Pr						
	1 = OFF P	Program memory of Program memory o					
bit 6	$MCLRE: \overline{MC}$ $If LVP bit = 1$ This bit is $If LVP bit = 0$ $1 = ON$ $0 = OFF$	ignored. (OFF): MCLR/VPP pin	function is I	MCLR; Weak p <u>ull-u</u> digital input; MCI		lisabled; Weak	pull-up unde
bit 5	1 = OFF P	wer-up Timer Enal WRT disabled WRT enabled	ble bit ⁽¹⁾				

Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.

2: The entire program memory will be erased when the code protection is turned off.

REGISTER 3-3: CONFIGURATION WORD 1 (CONTINUED)

bit 4-3	WDTE<1:0>: W3 11 = ON 10 = SLEEP 01 = SWDTEN 00 = OFF	atchdog Timer Enable bit WDT enabled WDT enabled while running and disabled in Sleep WDT controlled by the SWDTEN bit in the WDTCON register WDT disabled
bit 2-0	FOSC<2:0>: Os 111 = ECH 110 = ECM 101 = ECL 100 = INTOSC 011 = EXTRC 010 = HS 001 = XT 000 = LP	cillator Selection bits External Clock, High-Power mode: CLKIN on OSC1/CLKIN External Clock, Medium-Power mode: CLKIN on OSC1/CLKIN External Clock, Low-Power mode: CLKIN on OSC1/CLKIN Internal HFINTOSC, I/O function on OSC1/CLKIN External RC oscillator, RC function on OSC1/CLKIN High-speed crystal/resonator on OSC2/CLKOUT pin and OSC1/CLKIN Crystal/resonator on OSC2/CLKOUT pin and OSC1/CLKIN Low-power crystal on OSC2/CLKOUT pin and OSC1/CLKIN

- Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.
 - 2: The entire program memory will be erased when the code protection is turned off.

REGISTER 3-4: CONFIGURATION WORD 2								
		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
		LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	
		bit 13					bit 8	
R/P-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1	R/P-1	
ZCDDIS			—	_	PPS1WAY	WRT	<1:0>	
bit 7							bit 0	
Legend:								
R = Readab	le bit	P = Programm	nable bit	U = Unimplen	nented bit, read	as '1'		
'0' = Bit is cl	eared	'1' = Bit is set		n = Value whe	en blank or aftei	r Bulk Erase		
bit 13	LVP: Low-Vo 1 = ON 0 = OFF	Itage Programn Low-voltage pr MCLR/VPP mu	ogramming er	abled	high voltage			
bit 12		Circuit Debugger In-Circuit Debu	· Mode bit gger disabled	, ICSPCLK and	ICSPDAT are of ICSPDAT are of			
bit 11	LPBOR: Low 1 = OFF 0 = ON	-Power Brown- Low-Power Bro Low-Power Bro	out Reset Ena own-out Reset	ble bit is disabled				
bit 10	BORV: Brown 1 = LOW 0 = HIGH	n-out Reset Voll Brown-out Res Brown-out Res	et voltage (VB	OR), low trip po				
bit 9								
bit 8								
bit 7	it 7 ZCDDIS: Zero-Cross Detect Disable bit 1 = ON Zero-cross detection is disabled on POR. Zero-cross detection can be controlled by software. 0 = OFF Zero-cross detection is always enabled. Software cannot disable zero-cross detection.							
bit 6-3			-	e shasiba. 001				
bit 2								
	The LVP bit cann See <mark>VBOR</mark> param				mode is entere	d via LVP.		

REGISTER 3-4: CONFIGURATION WORD 2 (CONTINUED)

- bit 1-0 WRT<1:0>: Flash Memory Self-Write Protection bits
 - 4 kW Flash memory: (PIC16(L)F1713):
 - 11 = OFF Write protection off
 - 10 = BOOT 000h to 1FFh write-protected, 200h to FFFh may be modified by PMCON control
 - 01 = HALF 000h to 7FFh write-protected, 800h to FFFh may be modified by PMCON control
 - 00 = ALL 000h to FFFh write-protected, no addresses may be modified by PMCON control

8 kW Flash memory: (PIC16(L)F1716/7)

- 11 = OFF Write protection off
- 10 = BOOT 0000h to 03FFh write-protected, 0400h to 1FFFh may be modified by PMCON control
- 01 = HALF 0000h to 0FFFh write-protected, 1000h to 1FFFh may be modified by PMCON control
- 00 = ALL 0000h to 1FFFh write-protected, no addresses may be modified by PMCON control <u>16 kW Flash memory:</u> (PIC16(L)F1718/9)
 - 11 = OFF Write protection off
 - 10 = BOOT 0000h to 07FFh write-protected, 0800h to 3FFFh may be modified by PMCON control
 - 01 = HALF 0000h to 1FFFh write-protected, 2000h to 3FFFh may be modified by PMCON control
 - 00 = ALL 0000h to 3FFFh write-protected, no addresses may be modified by PMCON control
- **Note 1:** The LVP bit cannot be programmed to '0' when Programming mode is entered via LVP.
 - **2:** See VBOR parameter for specific trip point voltages.

4.0 PROGRAM/VERIFY MODE

In Program/Verify mode, the program memory and the configuration memory can be accessed and programmed in serial fashion. ICSPDAT and ICSPCLK are used for the data and the clock, respectively. All commands and data words are transmitted LSb first. Data changes on the rising edge of the ICSPCLK and is latched on the falling edge. In Program/Verify mode, both the ICSPDAT and ICSPCLK are Schmitt Trigger inputs. The sequence that enters the device into Program/Verify mode places all other logic into the Reset state. Upon entering Program/Verify mode, all I/Os are automatically configured as high-impedance inputs and the address is cleared.

4.1 High-Voltage Program/Verify Mode Entry and Exit

There are two different methods of entering Program/ Verify mode via high-voltage:

- VPP First entry mode
- VDD First entry mode

4.1.1 VPP – FIRST ENTRY MODE

To enter Program/Verify mode via the VPP-first method, the following sequence must be followed:

- 1. Hold ICSPCLK and ICSPDAT low. All other pins should be unpowered.
- 2. Raise the voltage on MCLR from 0V to VIHH.
- 3. Raise the voltage on VDD from 0V to the desired operating voltage.

The VPP-first entry prevents the device from executing code prior to entering Program/Verify mode. For example, when the Configuration Word has MCLR disabled (MCLRE = 0), the power-up time is disabled ($\overline{PWRTE} = 0$), the internal oscillator is selected (Fosc = 100), and RA0 and RA1 are driven by the user application, the device will execute code. Since this may prevent entry, VPP-first entry mode is strongly recommended. See the timing diagram in Figure 8-2.

4.1.2 VDD – FIRST ENTRY MODE

To enter Program/Verify mode via the VDD-first method, the following sequence must be followed:

- 1. Hold ICSPCLK and ICSPDAT low.
- 2. Raise the voltage on VDD from 0V to the desired operating voltage.
- 3. Raise the voltage on MCLR from VDD or below to VIHH.

The VDD-first method is useful when programming the device when VDD is already applied, for it is not necessary to disconnect VDD to enter Program/Verify mode. See the timing diagram in Figure 8-1.

4.1.3 PROGRAM/VERIFY MODE EXIT

To exit Program/Verify mode take $\overline{\text{MCLR}}$ to VDD or lower (VIL). See Figures 8-3 and 8-4.

Note: In systems where the VDD and MCLR/VPP signals can be controlled independently the VPP last method of exit should be used to keep the device in Reset, thereby preventing any issues that may be caused by program execution.

4.2 Low-Voltage Programming (LVP) Mode

The Low-Voltage Programming mode allows the PIC16(L)F171X devices to be programmed using VDD only, without high voltage. When the LVP bit of the Configuration Word 2 register is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'. This can only be done while in the High-Voltage Entry mode.

Entry into the Low-Voltage ICSP Program/Verify mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

The key sequence is a specific 32-bit pattern, '0100 1101 0100 0011 0100 1000 0101 0000' (more easily remembered as MCHP in ASCII). The device will enter Program/Verify mode only if the sequence is valid. The Least Significant bit of the Least Significant nibble must be shifted in first.

Once the key sequence is complete, MCLR must be held at VIL for as long as Program/Verify mode is to be maintained.

For low-voltage programming timing, see Figures 8-8 and 8-9.

Exiting <u>Program/Verify</u> mode is done by no longer driving MCLR to VIL. See Figures 8-8 and 8-9.

Note: To enter LVP mode, the LSb of the Least Significant nibble must be shifted in first. This differs from entering the key sequence on other parts.

4.3 Program/Verify Commands

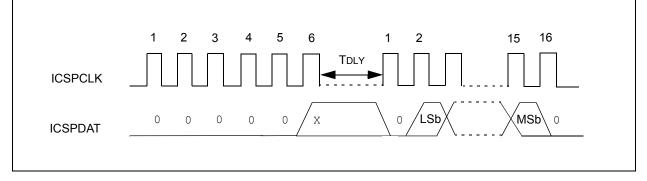
These devices implement 13 programming commands, each six bits in length. The commands are summarized in Table 4-1.

Commands that have data associated with them are specified to have a minimum delay of TDLY between the command and the data. After this delay, 16 clocks are required to either clock in or clock out the 14-bit data word. The first clock is for the Start bit and the last clock is for the Stop bit.

TABLE 4-1:COMMAND MAPPING

Command				Mappi	Data/Note			
Command	Binary (MSb … LSb)						Hex	Data/Note
Load Configuration	Х	0	0	0	0	0	00h	0, data (14), 0
Load Data For Program Memory	Х	0	0	0	1	0	02h	0, data (14), 0
Read Data From Program Memory	Х	0	0	1	0	0	04h	0, data (14), 0
Increment Address	Х	0	0	1	1	0	06h	—
Reset Address	Х	1	0	1	1	0	16h	—
Begin Internally Timed Programming	Х	0	1	0	0	0	08h	—
Begin Externally Timed Programming	Х	1	1	0	0	0	18h	—
End Externally Timed Programming	Х	0	1	0	1	0	0Ah	—
Bulk Erase Program Memory	Х	0	1	0	0	1	09h	Internally Timed
Row Erase Program Memory	Х	1	0	0	0	1	11h	Internally Timed

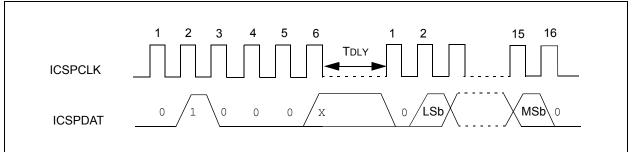
4.3.1 LOAD CONFIGURATION


The Load Configuration command is used to access the configuration memory (User ID Locations, Configuration Words, Calibration Words). The Load Configuration command sets the address to 8000h and loads the data latches with one word of data (see Figure 4-1).

After issuing the Load Configuration command, use the Increment Address command until the proper address to be programmed is reached. The address is then programmed by issuing either the Begin Internally Timed Programming or Begin Externally Timed Programming command.

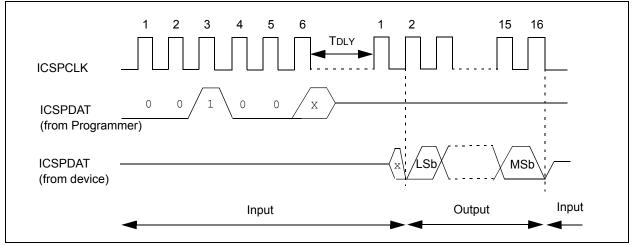
FIGURE 4-1: LOAD CONFIGURATION

Note: Externally timed writes are not supported for Configuration and Calibration bits. Any externally timed write to the Configuration or Calibration Word will have no effect on the targeted word.


The only way to get back to the program memory (address 0) is to exit Program/Verify mode or issue the Reset Address command after the configuration memory has been accessed by the Load Configuration command.

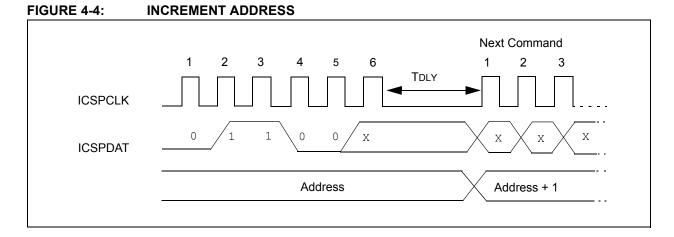
4.3.2 LOAD DATA FOR PROGRAM MEMORY

The Load Data for Program Memory command is used to load one 14-bit word into the data latches. The word programs into program memory after the Begin Internally Timed Programming or Begin Externally Timed Programming command is issued (see Figure 4-2).


FIGURE 4-2: LOAD DATA FOR PROGRAM MEMORY

4.3.3 READ DATA FROM PROGRAM MEMORY

The Read Data from Program Memory command will transmit data bits out of the program memory map currently accessed, starting with the second rising edge of the clock input. The ICSPDAT pin will go into Output mode on the first falling clock edge, and it will revert to Input mode (high-impedance) after the 16th falling edge of the clock. If the program memory is code-protected (\overline{CP}) , the data will be read as zeros (see Figure 4-3).



4.3.4 INCREMENT ADDRESS

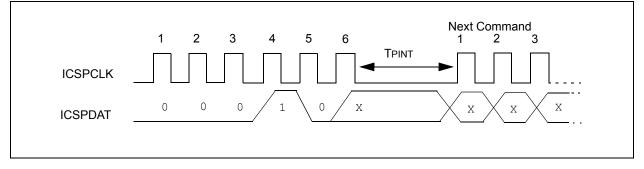
The address is incremented when this command is received. It is not possible to decrement the address. To reset this counter, the user must use the Reset Address command or exit Program/Verify mode and re-enter it.

If the address is incremented from address 7FFFh, it will wrap-around to location 0000h. If the address is incremented from FFFFh, it will wrap-around to location 8000h (see Figure 4-4).

4.3.5 RESET ADDRESS

The Reset Address command will reset the address to 0000h, regardless of the current value. The address is used in program memory or the configuration memory. See Figure 4-5.

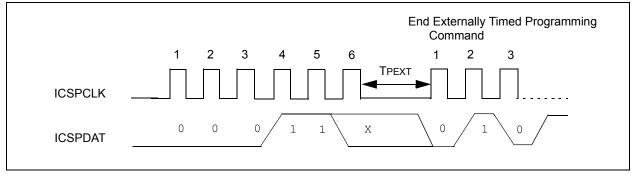
FIGURE 4-5: **RESET ADDRESS** Next Command 1 2 3 4 5 6 2 3 1 TDLY **ICSPCLK** 0 1 Х 1 0 1 Х Х Х **ICSPDAT** 0000h Ν Address


4.3.6 BEGIN INTERNALLY TIMED PROGRAMMING

A Load Configuration or Load Data for Program Memory command must be given before every Begin Programming command. Programming of the addressed memory will begin after this command is received. An internal timing mechanism executes the write. The user must allow for the program cycle time, TPINT, in order for the programming to complete.

The End Externally Timed Programming command is not needed when the Begin Internally Timed Programming is used to start the programming.

The program memory address that is being programmed is not erased prior to being programmed. See Figure 4-6.

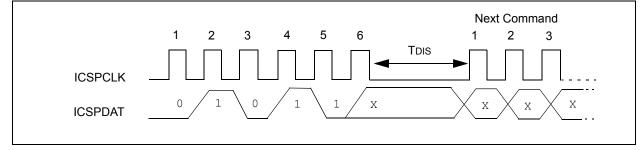


4.3.7 BEGIN EXTERNALLY TIMED PROGRAMMING

A Load Configuration or Load Data for Program Memory command must be given before every Begin Programming command. Programming of the addressed memory will begin after this command is received. To complete the programming, the End Externally Timed Programming command must be sent in the specified time window defined by TPEXT. See Figure 4-7.

Externally timed writes are not supported for Configuration and Calibration bits. Any externally timed write to the Configuration or Calibration Word will have no effect on the targeted word.

FIGURE 4-7: BEGIN EXTERNALLY TIMED PROGRAMMING



4.3.8 END EXTERNALLY TIMED PROGRAMMING

This command is required after a Begin Externally Timed Programming command is given. This command must be sent within the time window specified by TPEXT after the Begin Externally Timed Programming command is sent.

After sending the End Externally Timed Programming command, an additional delay (TDIS) is required before sending the next command. This delay is longer than the delay ordinarily required between other commands. See Figure 4-8.

FIGURE 4-8: END EXTERNALLY TIMED PROGRAMMING

4.3.9 BULK ERASE PROGRAM MEMORY

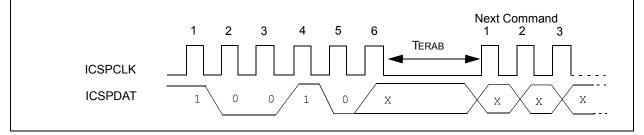
The Bulk Erase Program Memory command performs two different functions, dependent on the current state of the address.

Address 0000h-7FFFh:

Program Memory is erased

Configuration Words are erased

Address 8000h-8008h:

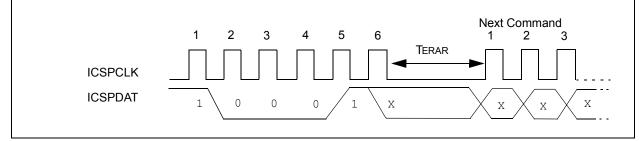

Program Memory is erased

Configuration Words are erased

User ID Locations are erased

A Bulk Erase Program Memory command should not be issued when the address is greater than 8008h.

FIGURE 4-9: BULK ERASE PROGRAM MEMORY



4.3.10 ROW ERASE PROGRAM MEMORY

The Row Erase Program Memory command will erase an individual row. Refer to Table 4-2 for row sizes of specific devices and the PC bits used to address them. If the program memory is code-protected, the Row Erase Program Memory command will be ignored. When the address is 8000h-8008h, the Row Erase Program Memory command will only erase the user ID locations regardless of the setting of the \overline{CP} Configuration bit.

After receiving the Row Erase Program Memory command, the erase will not complete until the time interval, TERAR, has expired. See Figure 4-10.

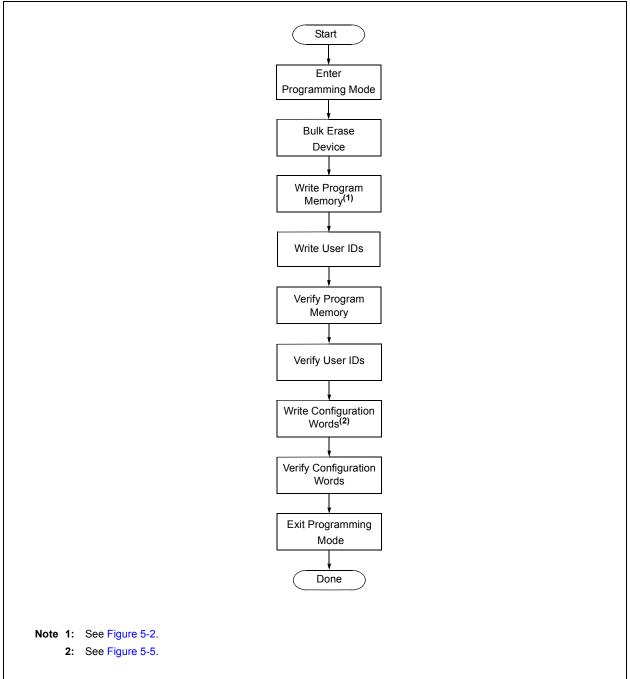
FIGURE 4-10: ROW ERASE PROGRAM MEMORY

After receiving the Bulk Erase Program Memory command, the erase will not complete until the time interval, TERAB, has expired.

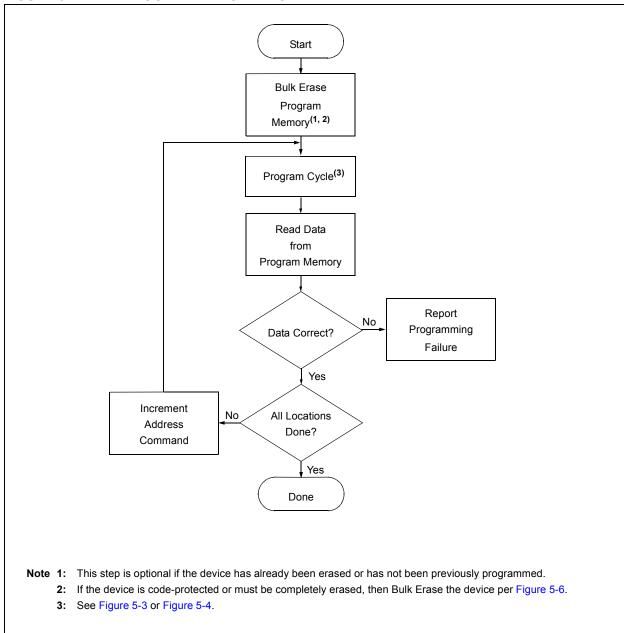
Note: The code protection Configuration bit (CP) has no effect on the Bulk Erase Program Memory command.

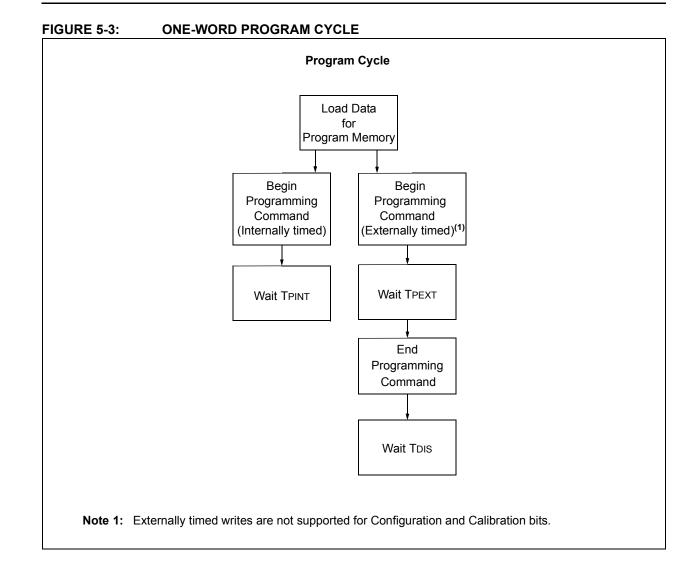
TABLE 4-2: PROGRAMMING ROW AND LATCH SIZES

Devices	PC	Erase Row Size (Number of 14-bit Words)	Write Row Size (Number of 14-bit Latches)
PIC16F1713			
PIC16F1716			
PIC16F1717			
PIC16F1718			
PIC16F1719		22	20
PIC16LF1713	<15:5>	32	32
PIC16LF1716			
PIC16LF1717			
PIC16LF1718			
PIC16LF1719			


5.0 PROGRAMMING ALGORITHMS

The devices use internal latches to temporarily store the 14-bit words used for programming. Refer to Table 4-2 for specific latch information. The data latches allow the user to write the program words with a single Begin Externally Timed Programming or Begin Internally Timed Programming command. The Load Program Data or the Load Configuration command is used to load a single data latch. The data latch will hold the data until the Begin Externally Timed Programming or Begin Internally Timed Programming or Begin Internally Timed Programming command is given.


The data latches are aligned with the LSbs of the address. The PS address bits indicated in Table 4-2 at the time the Begin Externally Timed Programming or Begin Internally Timed Programming command is given will determine which memory row is written. Writes cannot cross a physical row boundary. For example, attempting to write from address 0002h-0021h in a 32-latch device will result in data being written to 0020h-003Fh.


If more than the maximum number of latches are written without a Begin Externally Timed Programming or Begin Internally Timed Programming command, the data in the data latches will be overwritten. The following figures show the recommended flowcharts for programming.

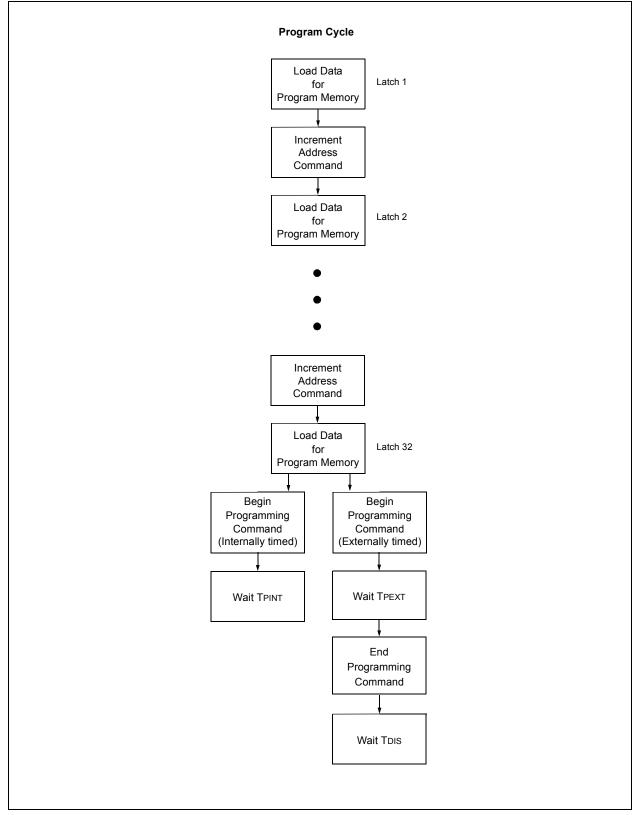
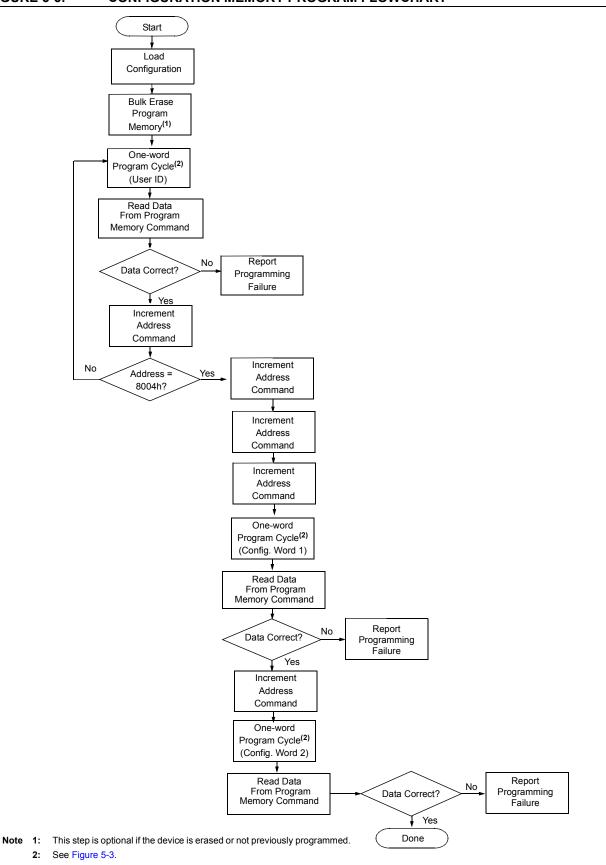
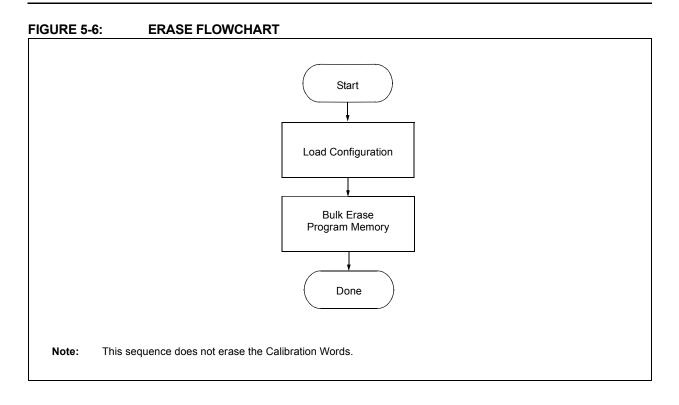




FIGURE 5-5: CONFIGURATION MEMORY PROGRAM FLOWCHART

6.0 CODE PROTECTION

Code protection is controlled using the \overline{CP} bit in Configuration Word 1. When code protection is enabled, all program memory locations (0000h-7FFFh) read as '0'. Further programming is disabled for the program memory (0000h-7FFFh). Program memory can still be programmed and read during program execution.

The user ID locations and Configuration Words can be programmed and read out regardless of the code protection settings.

6.1 Program Memory

Code protection is enabled by programming the \overline{CP} bit in Configuration Word 1 register to '0'.

The only way to disable code protection is to use the Bulk Erase Program Memory command.

7.0 HEX FILE USAGE

In the hex file there are two bytes per program word stored in the Intel[®] INHX32 hex format. Data is stored LSB first, MSB second. Because there are two bytes per word, the addresses in the hex file are 2x the address in program memory. (Example: The Configuration Word 1 is stored at 8007h. In the hex file this will be referenced as 1000Eh-1000Fh).

7.1 Configuration Word

To allow portability of code, it is strongly recommended that the programmer is able to read the Configuration Words and user ID locations from the hex file. If the Configuration Words information was not present in the hex file, a simple warning message may be issued. Similarly, while saving a hex file, Configuration Words and user ID information should be included.

7.2 Device ID

If a device ID is present in the hex file at 1000Ch-1000Dh (8006h on the part), the programmer should verify the device ID against the value read from the part. On a mismatch condition, the programmer should generate a warning message.

7.3 Checksum Computation

The checksum is calculated by two different methods dependent on the setting of the CP Configuration bit.

TABLE 7-1:	CONFIGURATION WORD
	MASK VALUES

Device	Config. Word 1 Mask	Config. Word 2 Mask
PIC16F1713	3EFFh	3F87h
PIC16LF1713	3EFFh	3F87h
PIC16F1716	3EFFh	3F87h
PIC16LF1716	3EFFh	3F87h
PIC16F1717	3EFFh	3F87h
PIC16LF1717	3EFFh	3F87h
PIC16F1718	3EFFh	3F87h
PIC16LF1718	3EFFh	3F87h
PIC16F1719	3EFFh	3F87h
PIC16LF1719	3EFFh	3F87h

7.3.1 PROGRAM CODE PROTECTION DISABLED

With the program code protection disabled, the checksum is computed by reading the contents of the PIC16(L)F171X program memory locations and adding up the program memory data starting at address 0000h, up to the maximum user addressable location (e.g., FFFh for the PIC16F1713). Any Carry bits exceeding 16 bits are ignored. Additionally, the relevant bits of the Configuration Words are added to the checksum. All unimplemented Configuration bits are masked to '0'.

7.3.2 PROGRAM CODE PROTECTION ENABLED

When the MPLAB[®] IDE check box for Configure->ID Memory...-> Use Unprotected Checksum is checked, then the 16-bit checksum of the equivalent unprotected device is computed and stored in the user ID. Each nibble of the unprotected checksum is stored in the Least Significant nibble of each of the four user ID locations. The Most Significant checksum nibble is stored in the user ID at location 8000h, the second Most Significant nibble is stored at location 8001h, and so forth for the remaining nibbles and ID locations. The protected checksums in Table 7-2 assume that the Use Unprotected Checksum box is checked.

The checksum of a code-protected device is computed in the following manner: the Least Significant nibble of each user ID is used to create a 16-bit value. The Least Significant nibble of user ID location 8000h is the Most Significant nibble of the 16-bit value. The Least Significant nibble of user ID location 8001h is the second Most Significant nibble, and so forth for the remaining user IDs and 16-bit value nibbles. The resulting 16-bit value is summed with the Configuration Words. All unimplemented Configuration bits are masked to '0'.

	Config1			Config2		Checksum				
Device				Word	Mask	Unprotected		Code-protected		
	Unprotected	Protected	Mask			Blank	00AAh First and Last	Blank	00AAh First and Last	
PIC16F1713	3FFFh	3F7Fh	3EFFh	3FFFh	3F87h	6E86h	EFDCh	EC8Ch	6DE2h	
PIC16F1716	3FFFh	3F7Fh	3EFFh	3FFFh	3F87h	5E86h	DFDCh	DC8Ch	5DE2h	
PIC16F1717	3FFFh	3F7Fh	3EFFh	3FFFh	3F87h	5E86h	DFDCh	DC8Ch	5DE2h	
PIC16F1718	3FFFh	3F7Fh	3EFFh	3FFFh	3F87h	3E86h	BFDCh	BC8Ch	3DE2h	
PIC16F1719	3FFFh	3F7Fh	3EFFh	3FFFh	3F87h	3E86h	BFDCh	BC8Ch	3DE2h	
PIC16LF1713	3FFFh	3F7Fh	3EFFh	3FFFh	3F87h	6E86h	EFDCh	EC8Ch	6DE2h	
PIC16LF1716	3FFFh	3F7Fh	3EFFh	3FFFh	3F87h	5E86h	DFDCh	DC8Ch	5DE2h	
PIC16LF1717	3FFFh	3F7Fh	3EFFh	3FFFh	3F87h	5E86h	DFDCh	DC8Ch	5DE2h	
PIC16LF1718	3FFFh	3F7Fh	3EFFh	3FFFh	3F87h	3E86h	BFDCh	BC8Ch	3DE2h	
PIC16LF1719	3FFFh	3F7Fh	3EFFh	3FFFh	3F87h	3E86h	BFDCh	BC8Ch	3DE2h	

TABLE 7-2: CHECKSUMS

8.0 ELECTRICAL SPECIFICATIONS

Refer to device specific data sheet for absolute maximum ratings.

TABLE 8-1: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

AC/DC CHARACTERISTICS			Standard Operating Conditions Production tested at 25°C						
Sym.	Characteristics	Min.	Тур.	Max.	Units	Conditions/Comments			
		Programming Su	upply Voltage	es and Cu	rrents				
Vdd	Supply Voltage (VDDMIN ⁽²⁾ , VDDMAX)	PIC16LF171X	1.80 2.50	—	3.60 3.60	V V	Fosc ≤ 16 MHz Fosc > 16 MHz		
VDD		PIC16F171X	2.30 2.50	—	5.50 5.50	V V	Fosc ≤ 16 MHz Fosc > 16 MHz		
VPEW	Read/Write and Row Erase operation	VDDMIN	—	VDDMAX	V				
Vbe	Bulk Erase operations	2.7		VDDMAX	V				
Iddi	Current on VDD, Idle	_		1.0	mA				
IDDP	Current on VDD, Programming		_	_	3.0	mA			
	VPP					•			
IPP	Current on MCLR/VPP				600	μA			
Vінн	High voltage on MCLR/VPP for Program/Verify mode entry	8.0	_	9.0	V				
TVHHR	MCLR rise time (VI∟ to VIHH) for Program/Verify mode entry	_	_	1.0	μS				
	I/O pins								
VIH	(ICSPCLK, ICSPDAT, MCLR/VPF	0.8 Vdd	_	_	V				
VIL	(ICSPCLK, ICSPDAT, MCLR/VPF	_		0.2 VDD	V				
Vон	ICSPDAT output high level	VDD-0.7 VDD-0.7 VDD-0.7	_	_	V	IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 2 mA, VDD = 1.8V			
Vol	ICSPDAT output low level	_	_	Vss+0.6 Vss+0.6 Vss+0.6	v	IOH = 8 mA, VDD = 5V IOH = 6 mA, VDD = 3.3V IOH = 3 mA, VDD = 1.8V			
VBOR	Brown-out Reset Voltage: BORV = 0 (high trip)		_	2.70	_	V	PIC16(L)F171X		
	BORV = 1 (low t	—	2.40 1.90	—	V V	PIC16F171X PIC16LF171X			
		Programmi	ng Mode Ent	ry and Exi	it				
Tents		Programming mode entry setup time: ICSPCLK, ICSPDAT setup time before VDD or MCLR↑		—	—	ns			
Tenth	Programming mode entry hold time: ICSPCLK, ICSPDAT hold time after VDD or MCLR1		250	—	-	μs			
	•	Seria	I Program/Ve	erify			•		
TCKL	Clock Low Pulse Width		100		—	ns			
Тскн	Clock High Pulse Width		100	_	—	ns			
TDS	Data in setup time before ${ m clock} \downarrow$		100	_	—	ns			
TDH	Data in hold time after clock↓		100	—	—	ns			
Тсо	Clock↑ to data out valid (during a Read Data command)		0	—	80	ns			
Tlzd	Clock↓ to data low-impedance (d Read Data command)	0	_	80	ns				

TABLE 8-1: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE (CONTINUED)

AC/DC CHARACTERISTICS		Standard Operating Conditions Production tested at 25°C						
Sym.	Characteristics	Min.	Тур.	Max.	Units	Conditions/Comments		
Thzd	Clock↓ to data high-impedance (during a Read Data command)	0	_	80	ns			
Tdly	Data input not driven to next clock input (delay required between command/data or command/ command)	1.0	_	_	μs			
TERAB	Bulk Erase cycle time	—	—	5	ms			
Terar	Row Erase cycle time	—	_	2.5	ms			
TPINT	Internally timed programming operation time	-	_	2.5 5	ms ms	Program memory Configuration Words		
TPEXT	Externally timed programming pulse	1.0	_	2.1	ms	Note 1		
TDIS	Time delay from program to compare (HV discharge time)	300	_	_	μs			
TEXIT	Time delay when exiting Program/Verify mode	1	—	_	μs			

Note 1: Externally timed writes are not supported for Configuration and Calibration bits.

2: Bulk-erased devices default to brown-out enabled. VDDMIN is 2.85 volts when performing low-voltage programming on a bulk-erased device, to ensure that the device is not held in Brown-out Reset.

8.1 AC Timing Diagrams

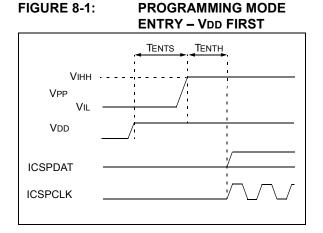
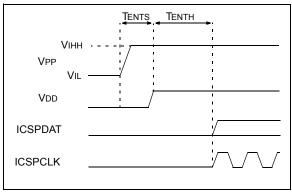



FIGURE 8-2: PROGRAMMING MODE ENTRY – VPP FIRST

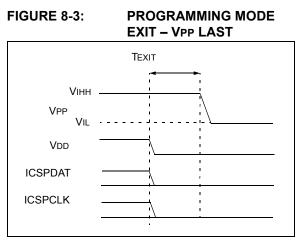
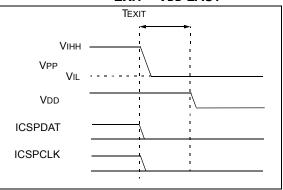
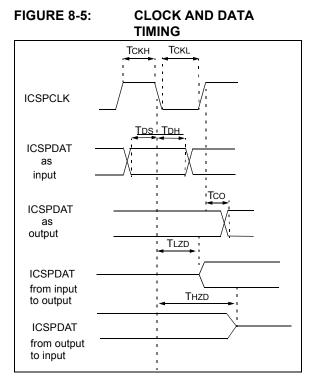
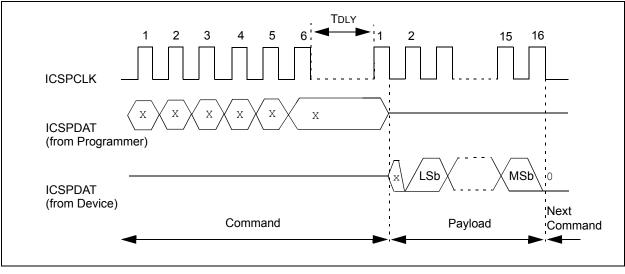
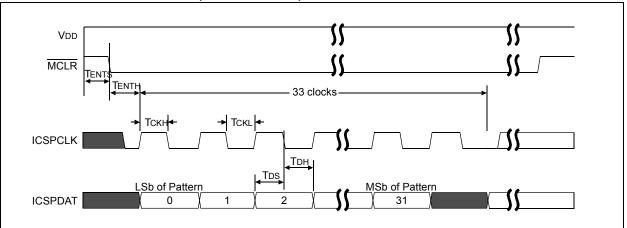





FIGURE 8-4:

PROGRAMMING MODE EXIT – VDD LAST




FIGURE 8-6: WRITE COMMAND – PAYLOAD TIMING

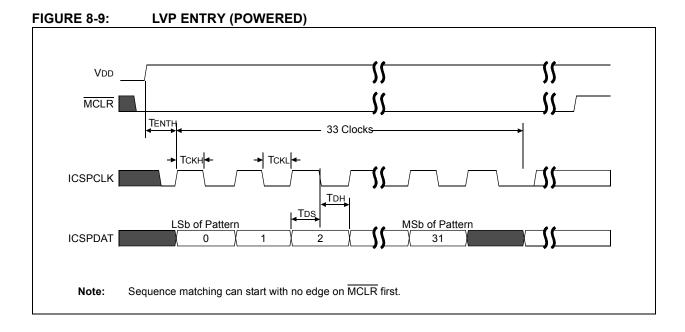


FIGURE 8-7: READ COMMAND – PAYLOAD TIMING

APPENDIX A: REVISION HISTORY

Revision A (06/2013)

Initial release of this document.

Revision B (08/2013)

Updated pin diagrams.

Revision C (12/2013)

Changed the family name to PIC16(L)F171X; Added PIC16(L)F1717, PIC16(L)F1718 and PIC16(L)F1719; Updated Table 8-1 in Chapter 8.0 (Electrical Specifications); Other minor corrections.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620777152

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187

Fax: 86-571-2819-3189 China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13