

# NTC Types PRE/K

# Thermometrics Thin-Film Resistance Elements



## **Applications**

- Especially suited for surface measurement
- Installation on printed circuit boards
- Application in the auto industry, domestic appliances
- Resistance elements selected in tolerance groups for calorimetry
- Large quantity applications

#### **Features**

- Small dimensions available
- High electrical insulation is guaranteed by non-conductive edges and sides
- Short response times



# Types PRE/K Specifications

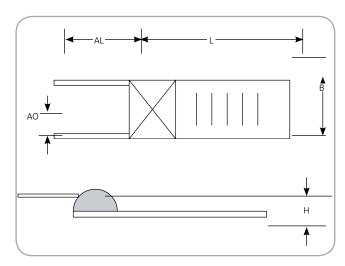
## Description

A ceramic substrate supports a structured platinum layer covered with glass. The connection lead contacts are shear force resistant.

## **Options**

Special versions on request. (Please take into account longer delivery time and minimum order quantity). Examples of possible variations are:

- Narrower IEC tolerances (indicate measurement point or range)
- Temperature up to 1112°F (600°C)
- Metallizations of the back of the substrate
- Longer or shorter connection wires
- Connection wires in opposite direction: U shape or S shape (chip surface completely covered with fixation paste for improved wire connection)
- Silver connection leads (Ø0.3 mm) which allows an easy soft solder (temperature range -94°F to 482°F (-70°C to 250°C))
- Extension of the connection wires with all types of cables.


### Data

#### **Nominal Resistance Value**

100  $\Omega$ , 500  $\Omega$ , 1000  $\Omega$  at 32°F (0°C)

#### **Tolerance Grade**

A and B according to IEC 751 and narrower tolerances in restricted temperature ranges. (-40°F to 302°F (-40°C to 150°C))



NTC Type PRE/K Dimensions

#### **Temperature Range**

-94°F to 932°F (-70°C to 500°C)

#### **Connection Material**

Platinum coated nickel wire

#### **Temperature Stability**

Slight hysteresis possible after temperature shocks.

#### **Vibration Resistance**

High resistance to vibration and shocks.

#### **Mechanical Stability**

Insensitive to varying pressure, but sensitive to twisting and bending. Care must be taken when housing the elements; excessive stress may affect nominal resistance.

#### **Environmental Conditions**

Unhoused, for dry environment only.

# Types PRE/K Specifications

| Part Number     | Nominal                  |                    | _   |     |    |     | _                  | response time in seconds |       |            |       |
|-----------------|--------------------------|--------------------|-----|-----|----|-----|--------------------|--------------------------|-------|------------|-------|
|                 | Resistance<br>Ω<br>@ 0°C | L B H AL           |     |     |    | AO  | k/mW<br>air stream | water current            |       | air stream |       |
|                 |                          | (Dimensions in mm) |     |     |    |     |                    | v=0.4 m/s                |       | v=1 m/s    |       |
|                 |                          |                    |     |     |    |     | v=1 m/s            | t=0.5                    | t=0.9 | t=0.5      | t=0.9 |
| Class B         |                          |                    |     |     |    |     |                    |                          |       |            |       |
| PT101K1003B1    | 100                      | 9.5                | 2.9 | 0.9 | 10 | 0.2 | 0.15               | 0.2                      | 0.5   | 5.4        | 17.9  |
| PT501K1003B1    | 500                      | 9.5                | 2.9 | 0.9 | 10 | 0.2 | 0.15               | 0.2                      | 0.5   | 5.4        | 17.9  |
| PT102K1003B1    | 1000                     | 9.5                | 2.9 | 0.9 | 10 | 0.2 | 0.15               | 0.2                      | 0.5   | 5.4        | 17.9  |
| PT101K1002B1    | 100                      | 9.5                | 1.9 | 0.9 | 10 | 0.2 | 0.20               | 0.2                      | 0.4   | 4.2        | 12.7  |
| PT501K1002B1    | 500                      | 9.5                | 1.9 | 0.9 | 10 | 0.2 | 0.20               | 0.2                      | 0.4   | 4.2        | 12.7  |
| PT102K1002B1    | 1000                     | 9.5                | 1.9 | 0.9 | 10 | 0.2 | 0.20               | 0.2                      | 0.4   | 4.2        | 12.7  |
| PT101K0403B1    | 100                      | 3.9                | 2.9 | 0.9 | 10 | 0.2 | 0.35               | 0.2                      | 0.5   | 4.1        | 13.6  |
| PT501K0403B1    | 500                      | 3.9                | 2.9 | 0.9 | 10 | 0.2 | 0.35               | 0.2                      | 0.5   | 4.1        | 13.6  |
| PT102K0403B1    | 1000                     | 3.9                | 2.9 | 0.9 | 10 | 0.2 | 0.35               | 0.2                      | 0.5   | 4.1        | 13.6  |
| PT101K0402B1    | 100                      | 3.9                | 1.9 | 0.9 | 10 | 0.2 | 0.50               | 0.2                      | 0.5   | 3.4        | 10.7  |
| PT501K0402B1    | 500                      | 3.9                | 1.9 | 0.9 | 10 | 0.2 | 0.50               | 0.2                      | 0.5   | 3.4        | 10.7  |
| Class A         |                          |                    |     |     |    |     |                    |                          |       |            |       |
| PT101K1003D1    | 100                      | 9.5                | 2.9 | 0.9 | 10 | 0.2 | 0.15               | 0.2                      | 0.5   | 5.4        | 17.9  |
| PT101K1002D1    | 100                      | 9.5                | 1.9 | 0.9 | 10 | 0.2 | 0.20               | 0.2                      | 0.4   | 4.2        | 12.7  |
| PT101K0403D1    | 100                      | 3.9                | 2.9 | 0.9 | 10 | 0.2 | 0.35               | 0.2                      | 0.5   | 4.1        | 13.6  |
| PT101K0402D1    | 100                      | 3.9                | 1.9 | 0.9 | 10 | 0.2 | 0.50               | 0.2                      | 0.5   | 3.4        | 10.7  |
| Class 1/3 DIN B |                          |                    |     |     |    |     |                    |                          |       |            |       |
| PT101K1003B3    | 100                      | 9.5                | 2.9 | 0.9 | 10 | 0.2 | 0.15               | 0.2                      | 0.5   | 5.4        | 17.9  |
| PT101K1002B3    | 100                      | 9.5                | 1.9 | 0.9 | 10 | 0.2 | 0.20               | 0.2                      | 0.4   | 4.2        | 12.7  |
| PT101K0403B3    | 100                      | 3.9                | 2.9 | 0.9 | 10 | 0.2 | 0.35               | 0.2                      | 0.5   | 4.1        | 13.6  |
| PT101K0402B3    | 100                      | 3.9                | 1.9 | 0.9 | 10 | 0.2 | 0.50               | 0.2                      | 0.5   | 3.4        | 10.7  |
| Class B         |                          |                    |     |     |    |     |                    |                          |       |            |       |
| PT101K2002B1    | 100                      | 2.3                | 1.9 | 0.9 | 10 | 0.2 | 1                  | 0.3                      | 0.8   | 3          | 9     |
| Class A         |                          |                    |     |     |    |     |                    |                          |       |            |       |
| PT101K2002A1    | 100                      | 2.3                | 1.9 | 0.9 | 10 | 0.2 | 1                  | 0.3                      | 0.8   | 3          | 9     |
| Class 1/3 DIN B |                          |                    |     |     |    |     |                    |                          |       |            |       |
| PT101K2002B3    | 100                      | 2.3                | 1.9 | 0.9 | 10 | 0.2 | 1                  | 0.3                      | 0.8   | 3          | 9     |

Dimensional tolerances: L (length of body) and B (width) =  $\pm 0.0059$  in ( $\pm 0.15$  mm), H (height, includes 0.0157 in (0.4 mm) substrate thickness) = maximum 0.0079 in / 0.0039 in ( $\pm 0.2$ mm / -0.1mm), AL (connection wire length) =  $\pm 0.04$  in ( $\pm 1.0$  mm). A0 (connection wire diameter) =  $\pm 0.00079$  in ( $\pm 0.02$  mm).

The measuring point for the basic value is situated at 0.315 in (8 mm) from the end of the sensor body.

